留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加速系数不变原则的失效机理一致性判别

奚文骏 王浩伟 王瑞奇

奚文骏, 王浩伟, 王瑞奇等 . 基于加速系数不变原则的失效机理一致性判别[J]. 北京航空航天大学学报, 2015, 41(12): 2198-2204. doi: 10.13700/j.bh.1001-5965.2014.0815
引用本文: 奚文骏, 王浩伟, 王瑞奇等 . 基于加速系数不变原则的失效机理一致性判别[J]. 北京航空航天大学学报, 2015, 41(12): 2198-2204. doi: 10.13700/j.bh.1001-5965.2014.0815
XI Wenjun, WANG Haowei, WANG Ruiqiet al. Failure mechanism consistency identification based on acceleration coefficient constant principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2198-2204. doi: 10.13700/j.bh.1001-5965.2014.0815(in Chinese)
Citation: XI Wenjun, WANG Haowei, WANG Ruiqiet al. Failure mechanism consistency identification based on acceleration coefficient constant principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2198-2204. doi: 10.13700/j.bh.1001-5965.2014.0815(in Chinese)

基于加速系数不变原则的失效机理一致性判别

doi: 10.13700/j.bh.1001-5965.2014.0815
基金项目: 国家自然科学基金(61273058)
详细信息
    作者简介:

    奚文骏(1978-),男,江苏常州人,博士研究生,副教授,usb20@126.com

    通讯作者:

    王浩伟(1981-),男,山东莱州人,博士,讲师,wyg2010123@126.com,主要研究方向为加速试验、贮存延寿.

  • 中图分类号: V216.5;TB114.3

Failure mechanism consistency identification based on acceleration coefficient constant principle

  • 摘要: 为了解决加速退化试验中产品失效机理一致性判别难题,以Gamma退化模型为研究对象,提出了基于加速系数不变原则的失效机理一致性判别方法.在阐明失效机理一致性判别理论依据的基础上,引入加速系数不变原则推导出Gamma过程的参数在不同应力下应满足的变化规律,利用t统计量对参数一致性进行检验以判别失效机理是否一致.通过仿真试验和实例应用验证了所提的方法,研究结论显示所提方法具有良好的工程应用性.

     

  • [1] 冯静.基于秩相关系数的加速贮存退化失效机理一致性检验[J].航空动力学报,2011,26(11):2439-2444. Feng J.Consistent test of accelerated storage degradation failure mechanism based on rank correlation coefficient[J].Journal of Aerospace Power,2011,26(11):2439-2444(in Chinese).
    [2] 姚军,王欢,苏泉.基于灰色理论的失效机理一致性检验方法[J].北京航空航天大学学报,2013,39(6):734-738. Yao J,Wang H,Su Q.Consistency identification method of failure mechanism based on grey theory[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(6):734-738(in Chinese).
    [3] 潘晓茜,康锐.基于灰色预测的加速试验机理一致性判别方法[J].北京航空航天大学学报,2013,39(6):787-791. Pan X Q,Kang R.Identification method of failure mechanism consistency for accelerated testing based on grey forecasting[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(6):787-791(in Chinese).
    [4] 李晓刚,王亚辉.利用非等距灰色理论方法判定失效机理一致性[J].北京航空航天大学学报,2014,40(7):899-904. Li X G,Wang Y H.Identification method of failure mechanism consistency by non-equidistance grey theory model[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(7):899-904(in Chinese).
    [5] 周源泉,翁朝曦.对数正态分布环境因子的统计推断[J].系统工程与电子技术,1996,18(10):73-81. Zhou Y Q,Weng C X.Statistical inferences of environmental factors for the lognormal distribution[J].System Engineering and Electronics,1996,18(10):73-81(in Chinese).
    [6] 马小兵,王晋忠,赵宇.基于伪寿命分布的退化数据可靠性评估方法[J].系统工程与电子技术,2011,33(1):228-232. Ma X B,Wang J Z,Zhao Y.Reliability assessment using constant-stress accelerated degradation data based on pseudo life distribution[J].System Engineering and Electronics,2011,33(1):228-232(in Chinese).
    [7] 林逢春,王前程,陈云霞,等.基于伪寿命的加速退化机理一致性边界检验[J].北京航空航天大学学报,2012,38(2):233-238. Lin F C,Wang Q C,Chen Y X,et al.Pseudo-life-based test method of mechanism consistency boundary for accelerated degradation testing[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(2):233-238(in Chinese).
    [8] 王浩伟,徐廷学,王伟亚.基于退化模型的失效机理一致性检验方法[J].航空学报,2015,36(3):889-897. Wang H W,Xu T X,Wang W Y.Test method of failure mechanism consistency based on degradation model[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):889-897(in Chinese).
    [9] 周源泉,翁朝曦,叶喜涛.论加速系数与失效机理不变的条件(Ⅰ):寿命型随机变量的情况[J].系统工程与电子技术,1996,18(1):55-67. Zhou Y Q,Weng C X,Ye X T.Study on accelerated factor and condition for constant failure mechanism(Ⅰ):The case for lifetime is a random variable[J].Systems Engineering and Electronics,1996,18(1):55-66(in Chinese).
    [10] 杨宇航,周源泉.加速寿命试验的理论基础(Ⅰ)[J].推进技术,2001,22(4):276-278. Yang Y H,Zhou Y Q.Theoretical foundation of accelerated life(Ⅰ)[J].Journal of Propulsion Technology,2001,22(4):276-278(in Chinese).
    [11] Park C,Padgett W J.Accelerated degradation models for failure based on Geometric Brownian motion and Gamma processes[J].Lifetime Data Analysis,2005,11(4):511-527.
    [12] Tseng S T,Balakrishnan N,Tsai C C.Optimal step-stress accelerated degradation test plan for Gamma degradation processes[J].IEEE Transactions on Reliability,2009,58(4):611-618.
    [13] Lawless J,Crowder M.Covariates and random effects in a Gamma process model with application to degradation and failure[J].Lifetime Data Analysis,2004,10(3):213-227.
    [14] Wang X.Nonparametric estimation of the shape function in a Gamma process for degradation data[J].The Canadian Journal of Statistics,2009,37(1):102-118.
    [15] Wang H W.Xu T X,Mi Q.Lifetime prediction based on Gamma processes from accelerated degradation data[J].Chinese Journal of Aeronautics,2015,28(1):172-179.
    [16] 王浩伟,徐廷学,赵建忠.融合加速退化和现场实测退化数据的个体寿命预测方法[J].航空学报,2014,35(12):3350-3357. Wang H W,Xu T X,Zhao J Z.Residual life prediction method fusing accelerated degradation data and field degradation data[J].Acta Aeronautica et Astronautica Sinica,2014,35(12):3350-3357(in Chinese).
    [17] Wang X,Xu D.An inverse Gaussian process model for degradation data[J].Technometrics,2010,52(2):188-197.
  • 加载中
计量
  • 文章访问数:  998
  • HTML全文浏览量:  76
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-03-06
  • 网络出版日期:  2015-12-20

目录

    /

    返回文章
    返回
    常见问答