Experimental analysis of wall quenching distance of a premixed Bunsen flame
-
摘要: 淬熄距离是表征壁面淬熄效应的一项重要参数.通过直接拍摄火焰位置图片,得到甲烷本生灯预混火焰淬熄距离随来流预混气速度与当量比的变化关系.实验结果表明,本生灯火焰淬熄距离随来流速度的变化规律在不同当量比范围内是不同的.而在同一速度下,随来流当量比增大,淬熄距离贫油时减小,富油时先增大再减小,最后在某一当量比时淬熄距离保持一个定值.这一变化关系是由来流预混气对壁面的冷却作用和火焰面对壁面的加热作用共同影响所造成的,尤其是富油预混火焰的双层结构会极大地影响淬熄效应.Abstract: Quenching distance is a major parameter to characterize the flame wall quenching effect. The quenching distance of a methane-air premixed Bunsen flame was measured using direct photography of the flame position. The result indicates that the quenching distance changes differently with the incoming flow velocity under different equivalence ratio ranges. While the velocity is fixed, the quenching distance decreases with the increasing equivalence ratio for the lean flame. For the rich flame the quenching distance first increases and then decreases, and keeps a constant after a certain equivalence ratio. This correlation is induced by the competition between the cooling of the wall by incoming flow and the heating of the wall by flame. The double-flame structure of a premixed rich flame especially influences the wall quenching effect very remarkably.
-
Key words:
- wall quenching /
- quenching distance /
- Bunsen burner /
- premixed flame /
- double-flame structure
-
[1] Sotton J,Boust B, Labuda S A,et al.Head-on quenching of transient laminar flame:Heat flux and quenching distance measurements[J].Combustion Science and Technology,2005,177(7):1305-1322. [2] von Elbe G, Lewis B.Theory of ignition,quenching and stabilization of flames of nonturbulent gas mixtures[J].Symposium on Combustion Flame and Explosion Phenomen,1949,3(1):68-79. [3] Sher E, Heywood J B,Hacohen J.Heat transfer to the electrodes a possible explanation of misfire in SI-engines[J].Combustion Science and Technology,1992,83(4-6):323-325. [4] Dulger M, Sher E,Chemla F.Simulation of spark created turbulent flame development through numerical stochastic realizations[J].Combustion Science and Technology,1994,100(6):141-162. [5] Popp P, Baum M.Analysis of wall heat fluxes,reaction mechanisms,and unburnt hydrocarbons during the head-on quenching of a laminar methane flame[J].Combustion and Flame,1997,108(3):327-348. [6] Bai B, Chen Z,Zhang H W,et al.Flame propagation in a tube with wall quenching of radicals[J].Combustion and Flame,2013,160(12):2810-2819. [7] Wohl K. Quenching,flash-back,blow-off:Theory and experiment[J].Symposium on Combustion Flame and Explosion Phenomena,1953,4(1):68-89. [8] Boust B, Sotton J.A thermal formulation for single-wall quenching of transient laminar flames[J].Combustion and Flame,2007,149(3):286-294. [9] Goolsby A D, Haskell W W.Flame-quench distance measurements in CFR engine[J].Combustion and Flame,1976,26(1):105-114. [10] Hackert C L, Ellzey J L,Ezekoye O A.Effect of thermal boundary conditions on flame shape and quenching in ducts[J].Combustion and Flame,1998,112(1-2):73-84. [11] Alkidas A C. Combustion-chamber crevices:The major source of engine-out hydrocarbon emissions under fully warmed conditions[J].Progress in Energy and Combustion Science,1999,25(3):253-273. [12] Berlad A L, Potter A E.Prediction of the quenching effect of various surface geometries[J].Symposium (International) on Combustion,1955,5(1):728-735. [13] Potter A E, Berlad A L.A thermal equation for flame quenching,NASA TN 3398[R].Washington,D.C.:US Government Printing Office,1955. [14] Ferguson C R, Keck J C.On laminar flame quenching and its application to spark ignition engines[J].Combustion and Flame,1977,28(2):197-205. [15] Vosen S R, Greif R,Westbrook C K.Unsteady heat transfer during laminar flame quenching[J].Symposium (International) on Combustion,1985,20(1):75-83. [16] Huang W M, Vosen S R,Greif R.Heat transfer during laminar flame quenching:Effect of fuels[J].Symposium (International) on Combustion,1988,21(1):1853-1860. [17] Wichman I S, Bruneaux G.Head-on quenching of a premixed flame by a cold wall[J].Combustion and Flame,1995,103(4):296-310. [18] Hasse C, Bollig M,Peters N,et al.Quenching of laminar iso-octane flames at cold walls[J].Combustion and Flame,2000,122(1-2):117-129. [19] Daniel W A. Flame quenching at the walls of an internal combustion engine[J].Symposium (International) on Combustion,1957,6(1):886-894. [20] Bellenoue M, Kageyama T,Labuda S A,et al.Direct measurement of laminar flame quenching distance in a closed vessel[J].Experimental Thermal and Fluid Science,2003,27(3):323-331. [21] Enomoto M. Head-on quenching of a premixed flame on the single wall surface[J].JSME International Journal Series B Fluids and Thermal Engineering,2001,44(4):624-633. [22] Enomoto M. Side-wall quenching of laminar premixed flame propagating along the single wall surface[J].Proceedings of the Combustion Institute,2002,29(1):781-787. [23] Bennett B A V, Fielding J,Mauro R J,et al.A comparison of the structures of lean and rich axisymmetric laminar Bunsen flames:Application of local rectangular refinement solution-adaptive gridding[J].Combustion Theory and Modelling,1999,3(4):657-687. [24] Lewis B, von Elbe G.Combustion,flames and explosions of gases[M].New York:Academic Press,1961:266. [25] 黄夏,黄勇,王方, 等.采用速度匹配法研究本生灯火焰的稳定点位置[J].燃烧科学与技术,2011,17(1):72-77. Huang X,Huang Y,Wang F,et al.Anchoring point of a Bunsen flame by velocity-matching method[J].Journal of Combustion Science and Technology,2011,17(1):72-77(in Chinese). [26] Huang X, Huang Y,Wang F,et al.Bunsen flame blow-off:Velocity-matching method[C]//ASME 2011 Turbo Expo:Turbine Technical Conference and Exposition.Volume 2:Combustion,Fuels and Emissions,Parts A and B.New York:American Society of Mechanical Engineers,2011:623-631. [27] 黄夏,黄勇,巩帆. 本生灯层流预混火焰稳定点与熄火机理[J].北京航空航天大学学报,2013,39(10):1325-1330. Huang X,Huang Y,Gong F.Anchoring point and blow-off mechanism of Bunsen laminar premixed flame[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(10):1325-1330(in Chinese). [28] Aggarwal S K. Extinction of laminar partially premixed flames[J].Progress in Energy and Combustion Science,2009,35(6):528-570.
点击查看大图
计量
- 文章访问数: 1008
- HTML全文浏览量: 43
- PDF下载量: 725
- 被引次数: 0