Gray target tracking algorithm based on edge information
-
摘要: 提出了一种基于边缘信息的跟踪算法,其可以实现对剧烈变化的灰度目标的精确跟踪.首先,利用基于双同心圆窗口算子的非线性边缘检测算法得到高质量的边缘信息;其次,为了解决单一边缘特征空间不能充分表征目标的难题,提出了一种通过组合边缘图像构建特征空间的方法,以便为目标建模提供充分信息;再次,在构建的特征空间中使用核估计方法对目标进行建模;在目标定位阶段,利用Kalman滤波器对目标进行预估后,再由Mean Shift算法在预估位置邻近区域实现目标定位;最后,提出了一种基于形态学的动态模型更新策略,使得算法不仅可以获得精确的目标区域,还可以实现对目标尺寸和形状变化的自适应.实验结果表明,本算法不仅可以有效跟踪剧烈变化的灰度目标,而且跟踪窗口可以实现对目标尺寸和形状的自适应.Abstract: To precisely track the gray targets undergoing drastic changes in the image sequence, a new tracking algorithm based on edge information was proposed. Firstly, obtained by the two-concentric-circular-window operator, a nonlinear edge detection algorithm was proposed to get high quality edge information. Secondly, a novel method to construct feature space by synthesizing edge images was proposed in order to solve the problem that single edge feature space was not able to characterize the target thoroughly. The proposed method provided enough information to construct target model. Then, an approach to construct the target model with the kernel-based estimation method was proposed in constructed feature space. In target localization stage, the target position was preliminarily predicted by Kalman filter, and then the Mean Shift algorithm is utilized to locate the target in the region around the predicted position. Finally, a new dynamic model update strategy based on morphological operations was proposed. It can offer the proposed algorithm the ability to obtain precise target region and automatically adjust to the changing target size and target shape. Experimental results demonstrate that the proposed algorithm can perform well in image sequences where the targets undergo drastic changes. Meanwhile, the proposed algorithm can obtain the precise target region, and the track window can automatically adjust to the changing target size and target shape.
-
Key words:
- computer vision /
- target tracking /
- gray target /
- tracking algorithm /
- edge detection /
- Mean Shift
-
[1] 刘彬杰.复杂场景下灰度图像目标的精确跟踪方法研究[D].成都:电子科技大学,2011. Liu B J.Target tracking technology of grayscale image under complex background[D].Chengdu:University of Electronic Science and Technology of China,2011(in Chinese). [2] Wu Y,Lim J,Yang M H.Online object tracking:A benchmark[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2013:2411-2418. [3] Wang X,Liu L,Tang Z M.Infrared human tracking with improved mean shift algorithm based on multicue fusion[J].Applied Optics,2009,48(21):4201-4212. [4] Leichter I.Mean shift trackers with cross-bin metrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):695-706. [5] Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577. [6] 孔军,汤心溢,蒋敏,等.基于多尺度特征提取的Kalman滤波跟踪[J].红外与毫米波学报,2011,30(5):446-450. Kong J,Tang X Y,Jiang M,et al.Target tracking based on multi-scale feature extraction Kalman filter[J].Journal of Infrared and Millimeter Waves,2011,30(5):446-450(in Chinese). [7] Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28. [8] Pan P,Schonfeld D.Video tracking based on sequential particle filtering on graphs[J].IEEE Transactions on Image Processing,2011,20(6):1641-1651. [9] Ling J G,Liu E,Liang H Y,et al.Infrared target tracking with kernel-based performance metric and eigenvalue-based similarity measure[J].Applied Optics,2007,46(16):3239-3252. [10] Zhang S,Qin Y P,Jin G.Analyzing of mean-shift algorithm in gray target tracking technology[M]//Artificial Intelligence and Computational Intelligence.Berlin:Springer,2011:155-162. [11] 宋新,王鲁平,王平,等.基于改进均值位移的红外目标跟踪方法[J].红外与毫米波学报,2007,26(6):429-432. Song X,Wang L P,Wang P,et al.IR target tracking based on improved mean shift method[J].Journal of Infrared and Millimeter Waves,2007,26(6):429-432(in Chinese). [12] 赵倩,袁健全,鲁新平,等.结合目标预估计与Mean Shift理论的运动目标跟踪算法[J].红外与激光工程,2010,39(6):1152-1156. Zhao Q,Yuan J Q,Lu X P,et al.Moving object tracking algorithm based on object estimation and Mean Shift theory[J].Infrared and Laser Engineering,2010,39(6):1152-1156(in Chinese). [13] 程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. Cheng J,Yang J.Novel infrared object tracking method based on mean shift[J].Journal of Infrared and Millimeter Waves,2005,24(3):231-235(in Chinese). [14] Wang Z,Hou Q,Hao L.Improved infrared target-tracking algorithm based on mean shift[J].Applied Optics,2012,51(21):5051-5059. [15] 贾静平,张艳宁,柴艳妹,等.目标多自由度Mean Shift序列图像跟踪算法[J].西北工业大学学报,2005,23(5):618-622. Jia J P,Zhang Y N,Chai Y M,et al.Making tracking of object in image sequences steady despite complex movement of objects[J].Journal of Northwestern Polytechnical University,2005,23(5):618-622(in Chinese). [16] Zivkovic Z,Krose B.An EM-like algorithm for color-histogram-based object tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2004:798-803. [17] 刘兴淼,王仕成,赵静,等.基于自适应核窗宽的红外目标跟踪算法[J].控制与决策,2012,27(1):114-119. Liu X M,Wang S C,Zhao J,et al.Infrared target tracking algorithm based on adaptive bandwidth of Mean Shift[J].Control and Decision,2012,27(1):114-119(in Chinese). [18] 徐蓉萍,杨磊.红外复杂背景中一种融合两类跟踪框架优点的小目标跟踪算法[J].红外与毫米波学报,2008,27(5):354-360. Xu R P,Yang L.Small target tracking approach combined the merits of two tracking frameworks under infrared complex background[J].Journal of Infrared and Millimeter Waves,2008,27(5):354-360(in Chinese). [19] Li X H,Zhang T Y,Shen X D,et al.Object tracking using an adaptive Kalman filter combined with mean shift[J].Optical Engineering,2010,49(2):020503-1-020503-3. [20] Yilmaz A,Javed O,Shah M.Object tracking:A survey[J].Acm Computing Surveys (CSUR),2006,38(4):1-45. [21] 宋新.红外地面目标的检测、识别与跟踪技术研究及实现[D].长沙:国防科学技术大学,2007. Song X.Research and implementation of infrared ground target detection,recognition and tracking[D].Changsha:National University of Defense Technology,2007(in Chinese). [22] 梁燕,刘文耀.一种新型非线性边缘检测算法[J].光电子·激光,2003,14(12):1332-1335. Liang Y,Liu W Y.A new nonlinear algorithm for edge detection[J].Journal of Optoelectronics·Laser,2003,14(12):1332-1335(in Chinese). [23] di Sciasio E,Guaragnella C.Simple nonlinear dual-window operator for edge detection[J].Optical Engineering,2002,41(9): 2181-2185. [24] Yuan S,Li J H,Han J.An adaptive target tracking algorithm based on multi-feature fusion[C]//Proceedings of International Conference on Biomedical Engineering and Computer Science.Piscataway,NJ:IEEE Press,2010:1-4. [25] 刁伟鹤,毛峡,常乐.自动目标识别中的图像序列质量评价方法[J].电子与信息学报,2010,32(8):1729-1735. Diao W H,Mao X,Chang L.Quality estimation of image sequence for automatic target recognition[J].Journal of Electronics & Information Technology,2010,32(8):1729-1735(in Chinese). [26] Sevilla-Lara L,Learned-Miller E.Distribution fields for tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2012:1910-1917. [27] Wang D,Lu H,Yang M H.Least soft-threshold squares tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2013:2371-2378. [28] Zhang K,Zhang L,Yang M H.Real-time compressive tracking[M]//Proceedings of European Conference on Computer Vision.Berlin:Springer,2012:864-877. [29] Zhang K H,Zhang L,Yang M H.Fast compressive tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(10):2002-2015. [30] Zhang T Z,Ghanem B,Liu S,et al.Robust visual tracking via multi-task sparse learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2012:2042-2049.
点击查看大图
计量
- 文章访问数: 805
- HTML全文浏览量: 31
- PDF下载量: 592
- 被引次数: 0