Distributed adaptive iterative learning control for multiple robot manipulators
-
摘要: 针对拓扑结构为无向连通的多机械臂系统,提出了一种自适应与迭代学习相结合的分布式控制协议来实现整个系统对给定期望参考轨迹的一致性跟踪.通过引入一个适当的自适应迭代学习参数,所提自适应迭代学习控制协议能够克服机械臂系统中的干扰和模型不确定性,并且每个机械臂的自适应迭代学习控制(AILC)律仅需要利用其与邻居机械臂的相对交互信息.进一步,在只有一部分机械臂具有期望参考轨迹信息的前提下,该控制协议可以实现整个系统对期望参考轨迹的跟踪,同时能够保证轨迹跟踪误差与控制输入的有界性.此外,利用李亚普诺夫分析方法证实了所得结论的正确性,并且通过一个实例验证了所提自适应迭代学习控制协议的有效性.Abstract: A hybrid adaptive and iterative learning method was proposed to obtain distributed control protocols for multiple manipulator systems with undirected interaction topology to achieve consensus tracking of the specified desired reference trajectory. By introducing an appropriate adaptive iterative learning parameter, the proposed adaptive iterative learning control (AILC) protocol can overcome the effects of disturbances and model uncertainties of manipulators, where the AILC law of each manipulator needs only the relative information between it and its nearest neighbors. Moreover, it is shown that all manipulators can be rendered to achieve the perfect tracking of the desired reference trajectory though its information can be accessed by only a portion of manipulators, where the boundedness of both the tracking error and the control input can be simultaneously guaranteed. In addition, the Lyapunov analysis method is employed to validate the obtained results, and the effectiveness of the proposed AILC protocol is illustrated through an example.
-
[1] 吴振彪.工业机器人[M].武汉:华中理工出版社,2004:6-10. Wu Z B.Industrial robot[M].Wuhan:Huazhong Institute of Technology Press,2004:6-10(in Chinese). [2] Ren W,Beard R W.Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control,2005,50(5):655-661. [3] Olfati-Saber R,Murray R M.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533. [4] Olfati-Saber R.Ultrafast consensus in small-world networks[C]//Proceedings of the 2005 American Control Conference.Piscataway,NJ:IEEE Press,2005,4:2371-2378. [5] Hong Y G,Hu J P,Gao L X.Tracking control for multi-agent consensus with an active leader and variable topology[J].Automatica,2006,42(7):1177-1182. [6] Hu J P,Hong Y G.Leader-following coordi-nation of multi-agent systems with coupling time delays[J].Physica A:Statistical Mechanics and Its Applications,2007,374(2):853-863. [7] Ni W,Cheng D Z.Leader-following consensus of multi-agent systems under fixed and switching topologies[J].Systems & Control Letters,2010,59(3-4):209-217. [8] Zhang H W,Frank L.Optimal design for synchronization of cooperative systems:State feedback,observer and output feedback[J].IEEE Transactions on Automatic Control,2011,56(8):1948-1952. [9] Ren W.Multi-vehicle consensus with a time-varying reference state[J].Systems & Control Letters,2007,56(7-8):474-483. [10] Liu S,Xie L H,Lewis F L.Synchronization of multi-agent systems with delayed control input information from neighbors[J].Automatica,2011,47(10):2152-2164. [11] Li J,Li J.Adaptive iterative learning control for consensus of multi-agent systems[J].IET Control Theory and Applications,2013,7(1):136-142. [12] Meng D Y,Jia Y M.Iterative learning approaches to design finite-time consensus protocols for multi-agent systems[J].Systems & Control Letters,2012,61(1):187-194. [13] Su J B.Base calibration for dual robot system[J].Control Theory & Applications,1998,15(4):575-582. [14] Kosuge K,Ishikawa J,Furuta K,et al.Control of single master multi-slave manipulator system using VIM[C]//Proceeding of IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE Press,1990:1172-1177. [15] Tayebi A,Islam S.Adaptive iterative learning control for robot manipulators: Experimental results[J].Control Engineering Practice,2006,14(7):843-851. [16] Chien C J,Tayebi A.Further results on adaptive iterative learning control of robot manipulators[J].Automatica,2008,44(3):830-837. [17] 孙继鹏,孟德元.多机器人手臂系统一致性的自适应迭代学习控制[C]//第十届中国智能系统会议(CISC'14).北京:智能空天系统专业委员会,2014:346-351. Sun J P,Meng D Y.Adaptive iterative learning control for consensus tracking of multi-manipulator systems[C]//The 10th Chinese Intelligent System Conference(CISC'14).Beijing:Society of Intelligent Aerospace Systems,2014:346-351(in Chinese).
点击查看大图
计量
- 文章访问数: 787
- HTML全文浏览量: 26
- PDF下载量: 430
- 被引次数: 0