留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PD的半导体激光器温度控制系统设计方法

陈熙 全伟

李新友, 陈五一, 韩先国等 . 基于正交设计的3-RPS并联机构精度分析与综合[J]. 北京航空航天大学学报, 2011, 37(8): 979-984.
引用本文: 陈熙, 全伟. 基于PD的半导体激光器温度控制系统设计方法[J]. 北京航空航天大学学报, 2015, 41(12): 2391-2396. doi: 10.13700/j.bh.1001-5965.2015.0001
Li Xinyou, Chen Wuyi, Han Xianguoet al. Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 979-984. (in Chinese)
Citation: CHEN Xi, QUAN Wei. Design method of a PD-based temperature control system for laser diode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2391-2396. doi: 10.13700/j.bh.1001-5965.2015.0001(in Chinese)

基于PD的半导体激光器温度控制系统设计方法

doi: 10.13700/j.bh.1001-5965.2015.0001
基金项目: 国家自然科学基金(61374210,61227902);中央高校基本科研业务费专项资金(30371001)
详细信息
    作者简介:

    陈熙(1990-),女,山东济宁人,硕士研究生,chenxi.cug@gmail.com

    通讯作者:

    全伟(1977-),男,山东临沂人,副教授,quanwei@buaa.edu.cn,主要研究方向为量子科学仪器.

  • 中图分类号: TN248.4

Design method of a PD-based temperature control system for laser diode

  • 摘要: 半导体激光器常用于抽运与检测激光光源用于原子物理实验与量子科学仪器的研究,而半导体激光器的各特性参数,如阈值电流、峰值波长、输出功率、使用寿命等,均与温度相关,因此对其进行温度控制很重要.根据激光器输出功率与温度之间的关系,提出一种基于光电二极管(PD)的激光器温度控制系统,通过激光管内部集成的PD所获得的激光器光功率,进而得出激光器发光芯片温度,与热敏电阻相结合,以半导体制冷芯片为执行器,构成双闭环控制系统,可实现高精度长期稳定激光器温度控制,稳定度优于±5 mK,能够满足原子物理实验与研究对半导体激光器的要求.

     

  • [1] Wieman C E,Hollberg L.Using diode lasers for atomic physics[J].Review of Scientific Instruments,1991,62(1):1-20.
    [2] Allred J C,Lyman R N,Kornack T W,et al.High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J].Physical Review Letters,2002,89(13):130801.
    [3] Mitani S M,Alias M S,Yahya M R,et al.Temperature effect on gain and threshold current of GaInNAs-based 1.3μm semiconductor laser[C]//Proceedings of IEEE International Symposium on Industrial Electronics,ISIE.Piscataway,NJ:IEEE Press,2009:2208-2211.
    [4] Schetzen M.Analysis of the single-mode laser-diode linear model[J].Optics Communications,2009,282(14):2901-2905.
    [5] Park G,Huffaker D L,Zou Z,et al.Temperature dependence of lasing characteristics for long-wavelength (1.3-μm) GaAs-based quantum-dot lasers[J].IEEE Photonics Technology Letters,1999,11(3):301-303.
    [6] 徐秀芳,胡晓东.半导体激光器的功率稳恒控制技术[J].光子学报,2001,30(6):761-764. Xu X F,Hu X D.The power steadiness and control technology of semiconductor laser[J].Acta Photonica Sinica,2001,30(6):761-764(in Chinese).
    [7] Sun H.Laser diode beam basics,manipulations and characterizations[M].Berlin:Springer,2012:13-14.
    [8] 陈晨,党敬民,黄渐强,等.高稳定,强鲁棒性DFB激光器温度控制系统[J].吉林大学学报:工学版,2013,43(4):1004-1010. Chen C,Dang J M,Huang J Q,et al.DFB laser temperature control system with high stability and strong robustness[J].Journal of Jilin University:Engineering and Technology Edition,2013,43(4):1004-1010(in Chinese).
    [9] 李栋,李曼,耿宏伟.高性能半导体激光器温度控制单元的设计[J].航空精密制造技术,2012,48(4):45-47. Li D,Li M,Geng H W.Design of temperature control unit for high-performance semiconductor laser[J].Aviation Precision Manufacturing Technology,2012,48(4):45-47(in Chinese).
    [10] 汪灵,叶会英,赵闻.半导体激光器温度控制系统设计与算法仿真[J].仪表技术与传感器,2013(5):95-98. Wang L,Ye H Y,Zhao W.Design and simulation algorithm of temperature control system of diode laser[J].Instrument Technique and Sensor,2013(5):95-98(in Chinese).
    [11] 高平东,张法全.高精度半导体激光器温控系统的设计与实现[J].激光技术,2014,38(2):270-273. Gao D P,Zhang F Q.Design and implementation of high precision temperature control system for semiconductor lasers[J].Laser Technology,2014,38(2):270-273(in Chinese).
    [12] Coldren L A,Corzine S W,Mashanovitch M L.Diode lasers and photonic integrated circuits[M].New Jersey:John Wiley & Sons,2012:62-63.
    [13] Pankove J I.Temperature dependence of emission efficiency and lasing threshold in laser diodes[J].IEEE Journal of Quantum Electronics,1968,4(4):119-122.
    [14] 单成玉.温度对半导体激光器性能参数的影响[J].吉林师范大学学报:自然科学版,2003,24(4):95-97. Shan C Y.Temperature's effect on semiconductor laser performance parameter[J].Journal of Jilin University:Natural Science Edition,2003,24(4):95-97(in Chinese).
    [15] Lineykin S,Ben-Yaakov S.PSPICE-compatible equivalent circuit of thermoelectric cooler[C]//Proceedings of IEEE 36th Power Electronics Specialists Conference.Piscataway,NJ:IEEE Press,2005:608-612.
  • 期刊类型引用(14)

    1. 陈平平,陈家辉,王宣达,方毅,王锋. Dice系数前向预测的快速正交正则回溯匹配追踪算法. 电子与信息学报. 2024(04): 1488-1498 . 百度学术
    2. 张峰,凌锦炜,刘叶楠,赵黎. 基于DFT-SAMP算法的MIMO-VLC系统压缩感知信道估计. 光子学报. 2023(04): 52-62 . 百度学术
    3. 张家慧,王英志,李新格,沈亮. 一种改进型烟花重构算法及其在冲击波测试领域中的应用. 长春理工大学学报(自然科学版). 2022(02): 74-83 . 百度学术
    4. 于立君,钟飞,王辉,原新. 基于纹理信息的图像重构实验项目改进算法设计. 实验技术与管理. 2021(05): 154-157+161 . 百度学术
    5. 季策,王金芝,李伯群. 基于RSAMP算法的OFDM稀疏信道估计. 系统工程与电子技术. 2021(08): 2290-2296 . 百度学术
    6. 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构. 吉林大学学报(工学版). 2021(06): 2246-2252 . 百度学术
    7. 陶亮,刘海鹏,王蒙,董士谦. 基于回溯正则化的前向搜索正交匹配追踪算法研究. 陕西理工大学学报(自然科学版). 2020(02): 37-43 . 百度学术
    8. 丁倩,胡茂海. 一种改进的压缩感知重构算法. 红外技术. 2019(04): 364-369 . 百度学术
    9. 丁佳静,武雪姣,李雪晴. 稀疏度自适应回溯追踪算法改进. 软件导刊. 2019(08): 59-62 . 百度学术
    10. 江晓林,唐征宇,渠苏苏. 基于SWOMP分段回溯的压缩感知改进算法. 黑龙江科技大学学报. 2019(04): 501-505 . 百度学术
    11. 肖沈阳,金志刚,苏毅珊,武晋. 压缩感知OFDM稀疏信道估计导频设计. 北京航空航天大学学报. 2018(07): 1447-1453 . 本站查看
    12. 赵东波,李辉. 变步长SAMP算法在雷达目标识别中的应用. 控制工程. 2018(08): 1381-1385 . 百度学术
    13. 李琪,张欣,张平康,张航. 阈值稀疏自适应匹配追踪图像重构算法. 小型微型计算机系统. 2018(11): 2528-2532 . 百度学术
    14. 高宇轩,孙华燕,张廷华,都琳. 压缩编码孔径成像重构算法. 兵器装备工程学报. 2017(10): 191-196 . 百度学术

    其他类型引用(8)

  • 加载中
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  82
  • PDF下载量:  577
  • 被引次数: 22
出版历程
  • 收稿日期:  2015-01-04
  • 修回日期:  2015-04-03
  • 网络出版日期:  2015-12-20

目录

    /

    返回文章
    返回
    常见问答