Modified wide temperature compensation method for analog TCXO
-
摘要: 当要求模拟温补晶体振荡器(TCXO)在宽温范围内频率温度稳定性优于±1×10-6时,使用传统补偿方法通常一次成功率低.通过对温补精度影响因素的分析,得出温补网络中热敏电阻测试方法和计算模型误差较大.因此,提出一种改进的宽温补偿方法.首先,参考热敏电阻在宽温范围内在线测试,获得实际数据;然后,待使用热敏电阻依据参考热敏电阻测试数据进行比例建模,得到各温度对应电阻值;最后,将建模后的待使用热敏电阻代入温补网络计算程序,采用遗传算法优化计算网络参数.通过与传统方法的对比试验,表明该方法建模的热敏电阻与实际测试值更接近,温补网络计算程序更灵活,温补一次成功率提高到约90%以上.Abstract: When the temperature frequency stability of the temperature compensated crystal oscillator (TCXO) is required better than ±1×10-6 in a wide temperature range, the rate of once success for the traditional compensation method is low. The compensation precision influences were carefully analyzed, and the reasons were drawn that the measurement method and the calculation model of the thermistors within the temperature compensation network caused the higher tolerance. So a modified wide temperature compensation method was provided. At first, the reference thermistors were measured on-line in the wide temperature range to obtain the practical data. Secondly, the thermistors for using were proportionally modeled according to the reference thermistors measurement data to acquire the resistance for each temperature. At last, the modeled thermistors were input into the temperature compensation program, and the genetic algorithm was used to compute the optimized network parameters. The contrast tests were carried out, and show that the thermistor values with new modeling method are closer to the test values than those with the traditional method, the compensation program is more flexible, and the rate of once success for temperature compensation is improved more than 90%.
-
Key words:
- crystal oscillator /
- temperature compensation /
- thermistor /
- genetic algorithm /
- modeling
-
[1] GJB 1648A—2011.晶体振荡器通用规范[S].北京:总装备部军标出版发行部,2011:47. GJB 1648A—2011.General specification for crystal oscillators[S].Beijing:General Armament Department Military Standard Publishing Department,2011:47(in Chinese). [2] John R V.Introduction to quartz frequency standards,AD-A248503[R].NJ:US Army LABCOM ETDL,1992:22-28. [3] 吴剑强.小型超宽温度范围模拟温补晶振[J].湖南大学学报,1993,20(6):34-38. Wu J Q.The miniature temperature compensation crystal oscillator for ultra-wide range of temperature[J].Journal of Hunan University,1993,20(6):34-38(in Chinese). [4] 靳宝安,袁桃利,贾玉霞.晶振温补网络研究[J].陕西科技大学学报,2005,23(3):81-85. Jin B A,Yuan T L,Jia Y X.Analyse and research on the temperature compensate net of crystal oscillator[J].Journal of Shaanxi University of Science & Technology,2005,23(3):81-85(in Chinese). [5] 邓敏,陈卫.宽温高稳定度的温度补偿技术[J].电讯技术,2008,48(6):44-46. Deng M,Chen W.Temperature compensation technology with wide temperature and high frequency stability[J].Telecommunication Engineering,2008,48(6):44-46(in Chinese). [6] 李建文,祖兵.高准确度宽温石英晶振热敏网络温度补偿[J].传感器技术,2004,23(5):68-71. Li J W,Zu B.Temperature compensation to quartz crystal oscillator by thermistor net with high accuracy within wide temperature scope[J].Journal of Transducer Technology,2004,23(5):68-71(in Chinese). [7] 黄显核.最佳逼近法在晶体频温曲线拟合和TCXO中的应用[J].压电与声光,2005,27(4):452-454. Huang X H.Application of the best approximation algorithms on frequency-temperature curve fit and TCXO[J].Piezoelectrics and Acoustooptics,2005,27(4):452-454(in Chinese). [8] Mi Z,Wei X C.A 0.1 ppm successive approximation frequency-temperature compensation method for temperature compensated crystal oscillators (TCXO)[C]//Proceedings of 2009 World Congress on Computer Science and Information Engineering.Piscataway,NJ:IEEE Press,2009:493-498. [9] Wei F,Xian H H,Feng T,et al.An improved microcontroller compensated low phase noise overtone TCXO[C]//Proceedings of 2009 IEEE International Frequency Control Symposium and the 22nd European Frequency and Time forum. Piscataway,NJ:IEEE Press,2009:974-977. [10] 孙敏,黎敏强,陈中平,等.一种宽温高精度温补晶振的研制[J].电子技术,2013,26(8):90-92. Sun M,Li M Q,Chen Z P,et al.A high precision temperature compensated crystal oscillator in wide temperature range[J].Electronic Science and Technology,2013,26(8):90-92(in Chinese). [11] 江玉洁,陈辰,伏全海,等.一种全集成化的温补晶体振荡器[J].宇航计测技术,2003,23(3):52-57. Jiang Y J,Chen C,Fu Q H,et al.A full-integrated temperature compensated crystal oscillator[J].Journal of Astronautic Metrology and Measurement,2003,23(3):52-57(in Chinese). [12] 尹红斌.基于模拟-数字相结合的新型温补晶振的产业化设计[D].西安:西安电子科技大学,2007. Yin H B.Industrialized research of temperature compensated crystal based on analog-digital method[D].Xi'an:Xi'an Eletronic Science and Technology University,2007(in Chinese). [13] 王艳,黄显核,阎立群,等.高精度低噪声集成温度补偿晶体振荡器[J].压电与声光,2010,32(6):909-911. Wang Y,Huang X H,Yan L Q,et al.An integrated temperature compensated crystal oscillator with high-precision and low-noise[J].Piezoelectrics and Acoustooptics,2010,32(6):909-911(in Chinese). [14] Asad A A.Phase noise and jitter in CMOS ring oscillators[J].IEEE Journal of Solid-State Circuits,2006,41(8):1803-1816. [15] Behzad R.A study of phase noise in CMOS oscillators[J].IEEE Journal of Solid-State Circuits,1996,31(3):331-343. [16] 韩艳菊,杨科,郑鸿耀.一种用于模拟温度补偿晶体振荡器的温度补偿方法:中国,201310739925.3[P].2013-12-30. Han Y J,Yang K,Zheng H Y.A temperature compensation method for analog temperature compensated crystal oscillator:China,201310739925.3[P].2013-12-30(in Chinese). [17] 赵声衡,赵英.晶体振荡器[M].北京:科学出版社,2008:316-322. Zhao S H,Zhao Y.Crystal oscillator[M].Beijing:Science Press,2008:316-322(in Chinese). [18] 孙艳丰,郑加齐,王德兴,等.基于遗传算法的约束优化方法评述[J].北方交通大学学报,2000,24(6):14-19. Sun Y F,Zheng J Q,Wang D X,et al.A survey of constraint optimization method based on genetic algorithm[J].Journal of Northern Jiaotong University,2000,24(6):14-19(in Chinese). [19] 吕善伟,韩艳菊,王伟.遗传算法综合阵列的幅度和相位方向图[J].北京航空航天大学学报,2005,31(9):1014-1017. Lü S W,Han Y J,Wang W.Synthesis of the array's amplitude and phase pattern using genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(9):1014-1017(in Chinese).
点击查看大图
计量
- 文章访问数: 912
- HTML全文浏览量: 84
- PDF下载量: 491
- 被引次数: 0