Analysis of image processing model based on pixels of solitary waves
-
摘要: 通过对数字图像像素栅格之间非线性影响的研究,建立了像素间非线性影响的一维和二维时间演化方程模型,通过对方程模型的分析可知图像在空间上是离散的,图像像素之间的作用关系是非线性连续的,且方程具有解析性的孤波解.模型重点研究像素孤波的两个孤波之间的相互作用,给出了像素孤波的二孤波解,利用像素孤波的相互作用来研究模型的性能,发现像素孤波相互作用后仍能保持自身性质不变,因此可用像素孤波代替像素本身.同时发现像素孤波在相互作用时其幅值是两者的非线性叠加,可以作为影响的结果;并且像素孤波相互作用时其相位会发生特定的改变,可以将其映射为像素之间相互影响的方向信息.通过实验表明,模型可以用在图像滤波中,平滑度并不最优但是图像细节得到更多保留.
-
关键词:
- 像素栅格 /
- 非线性微分-差分方程 /
- 孤波算法 /
- 多尺度图像孤波 /
- 图像滤波
Abstract: Through the study on nonlinear effect of digital image pixel grid, the one-dimensional and two-dimensional time evolution equations model of nonlinear effect between pixels were established, the analysis of the equation model shows that the image was discrete in space, but on the structure of mutual information was a continuous differential difference equations, and the equation had analytic solitary wave solutions. The model was used to study the interaction of image pixels between two solitary waves, pixel solitary wave of two solitary wave solutions were given, and used the interaction of solitary waves of the pixel to study the performance of model, it was found that pixel solitary wave can still maintain their properties unchanged after the interaction, so pixel itself can be replaced by pixel solitary wave. To study the interaction situation of pixel solitary wave, it was found that pixel solitary wave amplitude was nonlinear superposition of the two, so it could be used as the result of the influence. The phase change of pixel solitary wave can map for direction and provide direction information of the image. The experiment result shows that the model can be used in image filtering, although the smoothness is not optimal, image details retain more. -
[1] Vese L,Osher S.The level set method links active contours,mumford-shah segmentation,and total variation restoration,CAM-report 02-05[R].Los Angeles,CA:CAM Report,2002. [2] Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639. [3] Xiao Z T,Xu Z B,Zhang F,et al.ESPI filtering method based on anisotropic coherence diffusion and Perona-Malik diffusion[J].Chinese Optics Letters,2013,11(10):43-46. [4] Shapiro J M.Embedded image coding using zero-tree of wavelet coefficients[J].IEEE Transactions on Signal Processing,1993,41(12):3445-3462. [5] Mallat S,Zhong S F.Characterization of signals from multiscale edges[J].IEEE Transactions on PAMI,1992,14(7):710-732. [6] Mallat S.Multiresolution representation and wavelets[D].Philade,PA:University of Pennsylvania,1988. [7] Rafiullah C,Asifullah K,Adnan I.Wavelet based image authentication and recovery[J].Journal of Computer Science & Technology,2007(6):795-804. [8] 晁锐,张科,李言俊.一种基于小波变换的图像融合算法[J].电子学报,2004,32(5):750-753. Chao R,Zhang K,Li Y J.An image fusion algorithm using wavelet transform[J].Acta Electronica Sinica,2004,32(5):750-753(in Chinese). [9] 郭亮.基于偏微分方程的图像滤波方法研究[D].沈阳:大连海事大学,2013. Guo L.PDE-based research on image filtering methods[D].Shenyang:Dalian Maritime University,2013(in Chinese). [10] 蔡超.基于小波和偏微分方程的图像处理方法与应用[D].武汉:华中科技大学,2005. Cai C.Wavelet and partial differential equation based image processing methods and their applications[D].Wuhan:Huazhong University of Science and Technology,2005(in Chinese). [11] 董卫军.基于小波变换的图像处理技术研究[D].西安:西北大学,2006. Dong W J.Image processing technique research based on wavelet transform[D].Xi'an:Northwest University,2006(in Chinese). [12] Zhu Z M,Liu R Q,Cao Y W,et al.Image processing algorithm based on solitary wave[J].Applied Mechanics and Materials,2014(539):126-130. [13] 田强.晶格振动简正坐标的具体表述及其讨论[J].大学物理,1999(8):7-8. Tian Q.Discussions on some relations about ortho-coordinate[J].College Physics,1999(8):7-8(in Chinese). [14] 陈登远.孤子引论[M].北京:科学出版社,2006:39-41. Chen D Y.An introduction to soliton[M].Beijing:Science Press,2006:39-41(in Chinese). [15] Hirota R.Exact solutions of Kortewerg-de veris equation for multiple collisions of solutions[J].Physical Review Letters,1971,27(18):1192-1194. [16] Remoissenet M.Waves called solitons[M].2nd ed.Berlin Heidelberg:Springer,1999:138-204. [17] Sulem C,Sulem P L.The nonlinear Schrodinger equation:Self-focusing and wave collapse[M].New York:Springer New York Inc.,1999:57-92.
点击查看大图
计量
- 文章访问数: 811
- HTML全文浏览量: 50
- PDF下载量: 473
- 被引次数: 0