Influence of side boundary condition on compression performance of aluminum alloys stiffened panels
-
摘要: 工程实际中,飞机加筋板结构受到梁或墙限制而呈简支状态,侧边受约束的高强铝合金加筋板在轴向压缩时,表现出与侧边自由加筋板不同的压缩特性。本文就此问题进行了试验和数值模拟研究。轴压试验中,通过影像云纹和应变计监测试验件屈曲及后屈曲过程。基于ABAQUS软件建立有限元模型,采用含韧性损伤和剪切损伤的Johnson-Cook本构模型,研究不同侧边约束下加筋板轴压特性。计算结果与试验结果相吻合,研究表明:侧边简支加筋板蒙皮同时发生失稳,而侧边自由加筋板侧边蒙皮首先发生失稳,侧边自由加筋板失稳载荷虽远低于侧边简支加筋板,但其结构破坏强度仅下降约9%。Abstract: Engineering aircraft stiffened structure reinforced by a beam or wall panels restriction are simply supported, and high strength aluminum alloys stiffened panels constrained by side boundary will exhibit different compression performance from panels with unsupported side boundary in axial compression. Test and numerical calculation research were conducted to study this phenomenon. Moiré interferometry and strain gauges were used to monitor the buckling and post-buckling process. Based on the software of ABAQUS, a finite element model was developed. Johnson-Cook constitutive model with ductile damage and shear damage was used to study compression performance of panels with different side boundary conditions. The calculated results are coordinated with the tested results very well. The results indicate that all skins of side simply supported panels buckle simultaneously, while only side skins of unsupported panels buckle. Despite the buckling load for unsupported panels is well lower than that for side simply supported panels,the former's ultimate load only almost decreases by 9%.
-
[1] 杜善义,关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报,2008,25(1):1-10. DU S Y,GUAN Z D.Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J].Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). [2] DURSUN T,SOUTIS C.Recent developments in advanced aircraft aluminum alloys[J].Materials & Design,2014,56(4):862-871. [3] HEINZ A,HASZLER A,KEIDEL C,et al.Recent development in aluminum alloys for aerospace applications[J].Materials Science and Engineering:A,2000,280(1):102-107. [4] STARKE E A,STALEY J T.Application of modern aluminum alloys to aircraft[J].Progress in Aerospace Science,1996,32(2-3):131-172. [5] 崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,1996:165-208. CUI D G.Design manual for structural stability[M].Beijing:Aviation Industry Press,1996:165-208(in Chinese). [6] AALBERG A,LANGSETH M,LARSEN P K.Stiffened aluminum panels subjected to axial compression[J].Thin-Walled Structures,2001,39(10):861-885. [7] PAULO R M F,TEIXEIRA-DIAS F,VALENTE R A F.Numerical simulation of aluminum stiffened panels subjected to axial compression:Sensitivity analyses to initial geometrical imperfections and material properties[J].Thin-Walled Structures,2013,62(1):65-74. [8] 曾元松,黄遐.大型整体壁板成形技术[J].航空学报,2008,29(3):721-727. ZENG Y S,HUANG X.Forming technologies of large integral panel[J].Acta Aeronautica et Astronautica Sinica,2008,29(3):721-727(in Chinese). [9] 李劲风,郑子樵,李世晨,等.铝合金时效成形及时效成形铝合金[J].材料导报,2006,20(5):101-103. LI J F,ZHENG Z Q,LI S C,et al.Age forming of Al alloys and ageformable Al alloys[J].Materials Review,2006,20(5):101-103(in Chinese). [10] 邵青,何宇廷,张腾,等.侧边边界条件对复合材料加筋板轴压载荷下屈曲后屈曲性能的影响[J].复合材料学报,2014,31(3):741-748. SHAO Q,HE Y T,ZHANG T,et al.Influence of side boundary condition on buckling and post-buckling performance of composite stiffened panels under axial compression load[J].Acta Materiae Compositae Sinica,2014,31(3):741-748(in Chinese). [11] CLARKE J D.Buckling of aluminum alloy stiffened plate ship structure[M]//NARAYANAN R.Aluminum atructures-advances design and construction.Amsterdam:Elsevier,1987:81-92. [12] TRYLAND T,HOPPERSTAD O S,LANGSETH M.Design of experiments to identify material properties[J].Materials & Design,2000,21(5):477-492. [13] 朱浩,朱亮,陈剑虹.应力三轴度和应变率对6063铝合金力学性能的影响及材料表征[J].材料科学与工程学报,2007,25(3):358-362. ZHU H,ZHU L,CHEN J H.Influence of stress triaxiality and strain rate on the mechanics behavior of 6063 aluminum alloy and material characterization[J].Journal of Materials Science & Engineering,2007,25(3):358-362(in Chinese). [14] 戴福隆,沈观林,谢惠民.实验力学[M].北京:清华大学出版社,2010:367-385. DAI F L,SHEN G L,XIE H M.Experimental mechanics[M].Beijing:Tsinghua University Press,2010:367-385(in Chinese). [15] ZHANG D N,SHANGGUAN Q Q,XIE C J,et al.A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J].Journal of Alloys and Compounds,2015,619:186-194. [16] HOOPUTRA H,GESE H,DELL H,et al.A comprehensive failure model for crashworthiness simulation of aluminum extrusions[J].International Journal of Crashworthiness,2004,9(5):449-463.
点击查看大图
计量
- 文章访问数: 1011
- HTML全文浏览量: 197
- PDF下载量: 431
- 被引次数: 0