Chordwise attenuation of heat transfer performance on inner surface of hot-air anti-icing system
-
摘要: 利用反向热流法实验研究了弦向3排射流喷口,且中央喷口正对前缘驻点结构下射流冲击热气防冰系统前缘内表面的局部传热特性。重点研究了喷孔射流出口雷诺数Rej、笛形管相对于前缘的距离与孔径比Zn/d、射流冲击驻点区弦向弧长与孔径比r/d对冲击前缘靶面的局部传热性能分布的影响。实验中Rej范围为2.5×104~1×105,Zn/d范围为1.736~27.5,r/d范围为13.21~61.5。结果表明,局部传热性能分布曲线为从驻点开始向两侧衰减的钟形曲线,包括稳定段、下降段和结束段3部分,其中稳定段只受参数r/d的影响,而参数Rej、Zn/d和r/d均能够明显影响下降段的下降速率,参数r/d则几乎不会改变下降段的总下降幅度。总结了此类喷口结构下射流冲击前缘换热性能衰减分布曲线的通用实验关联式,以指导防冰系统的设计和热性能的评估。Abstract: The local heat transfer performance on the inner surface of the airfoil leading in jet impingement hot-air anti-icing system is experimentally studied through inverse flux technique using a piccolo which has 3 rows of orifices chordwisely, among which the middle orifice is exactly facing the stagnation point. The jet Reynolds number, Rej, the relative piccolo tube to surface distance, Zn/d, and the relative chordwise arc length in the jet impingement zone, r/d, are studied as the factors of local jet impingement heat transfer performance. The range of Rej, Zn/d and r/d are 2.5×104-1×105, 1.736-27.5, 13.21-61.5, respectively. The local heat transfer performance curve looks like a bell, meaning it is high around the stagnation point and decreases as the position goes aside. This curve consists of 3 parts: the stable zone, the decline zone and the ending zone.Stable zone is only dependent on r/d. All of Rej, Zn/d and r/d significantly affect the declining rate of decline zone. However, the amount of decrease is nearly independent of r/d. The experimental correlation equation of the heat transfer performance attenuation under the circumstances of applying this kind of piccolo structure is developed, which would be helpful for future design of anti-icing system and evaluation of its thermal performance.
-
[1] SAEED F,MORENCY F,PARASCHIVOIU I.Numerical simulation of a hot-air anti-king system[C]//38th Aerospace Sciences Meeting and Exhibit.Reston:AIAA,2000. [2] SAEED F.Numerical heat transfer correlation for array of hot-air jets impinging on 3-dimensional concave surface[J].Journal of Aircraft,2005,42(3):665-670. [3] SAEED F.Numerical simulation of surface heat transfer from an array of hot-air jets[J].Journal of Aircraft,2008,45(2):700-714. [4] FREGEAU M,GABR M,PARASCHIVOIU I,et al.Simulation of heat transfer from hot-air jets impinging a three-dimensional concave surface[J].Journal of Aircraft,2009,46(2):721-726. [5] PLANQUART P,BORRE G V,BUCHLIN J M.Experimental and numerical optimization of a wing leading edge hot air anti-icing system:AIAA-2005-1277[R].Reston:AIAA,2005. [6] PAPADAKIS M,WONG S H J.Parametric investigation of a bleed air ice protection system:AIAA-2006-1013[R].Reston:AIAA,2006. [7] PAPADAKIS M,WONG S H,YEONG H W,et al.Icing tunnel experiments with a hot air anti-icing system:AIAA-2008-444[R].Reston:AIAA,2008. [8] PAPADAKIS M,WONG S H,YEONG H W,et al.Icing tests of a wing model with a hot-air ice protection system:AIAA-2010-7833[R].Reston:AIAA,2010. [9] BROWN J,WATTERSON J K,RAGHUNATHAN S,et al.Heat transfer correlation for de-icing systems:AIAA-2001-0837[R].Reston:AIAA,2001. [10] 潘旭云.某型飞机防冰系统机翼防冰腔性能研究[D].南京:南京航空航天大学,2006. PAN X Y.Performance analysis of micro-ejector anti-icing tunnel[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006(in Chinese). [11] 马辉,陈维建,孟繁鑫,等.发动机导向叶片热气防冰腔结构改进[J].南京航空航天大学学报,2013,45(1):70-74. MA H,CHEN W J,MENG F X,et al.Improvement of hot-air anti-icing structure of engine inlet vane[J].Journal of Nanjing University of Aeronautics and Astronautics,2013,45(1):70-74(in Chinese). [12] 周玉洁.热气腔结构的优化设计与数值模拟[D].南京:南京航空航天大学,2010. ZHOU Y J.Optimal design and numerical simulation of the hot air cavity structure[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010(in Chinese). [13] 彭珑,卜雪琴,林贵平,等.热气防冰腔结构参数对其热性能影响研究[J].空气动力学学报,2014,32(6):848-853. PENG L,BU X Q,LIN G P,et al.Influence of the structural parameters on thermal performance of the hot air anti-icing system[J].Acta Aerodynamica Sinica,2014,32(6):848-853(in Chinese). [14] 卜雪琴,陈雨晨,林贵平,等.热气防冰腔中短小销钉强化传热数值模拟[J].北京航空航天大学学报,2013,39(8):1053-1057. BU X Q,CHEN Y C,LIN G P,et al.Investigation of heat transfer enhancement of short pin fins in hot air anti-icing system[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(8):1053-1057(in Chinese). [15] 卜雪琴,林贵平,郁嘉.三维内外热耦合计算热气防冰系统表面温度[J].航空动力学报,2009,24(11):2495-2500. BU X Q,LIN G P,YU J.Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J].Journal of Aerospace Power,2009,24(11):2495-2500(in Chinese). [16] 卜雪琴,郁嘉,林贵平,等.机翼热气防冰系统设计[J].北京航空航天大学学报,2010,36(8):927-930. BU X Q,YU J,LIN G P,et al.Investigation of the design of wing hot-air anti-icing system[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(8):927-930(in Chinese).
点击查看大图
计量
- 文章访问数: 776
- HTML全文浏览量: 68
- PDF下载量: 459
- 被引次数: 0