留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于函数型数据的广义线性回归模型

王惠文 黄乐乐 王思洋

王惠文, 黄乐乐, 王思洋等 . 基于函数型数据的广义线性回归模型[J]. 北京航空航天大学学报, 2016, 42(1): 8-12. doi: 10.13700/j.bh.1001-5965.2015.0078
引用本文: 王惠文, 黄乐乐, 王思洋等 . 基于函数型数据的广义线性回归模型[J]. 北京航空航天大学学报, 2016, 42(1): 8-12. doi: 10.13700/j.bh.1001-5965.2015.0078
WANG Huiwen, HUANG Lele, WANG Siyanget al. Generalized linear regression model based on functional data analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 8-12. doi: 10.13700/j.bh.1001-5965.2015.0078(in Chinese)
Citation: WANG Huiwen, HUANG Lele, WANG Siyanget al. Generalized linear regression model based on functional data analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 8-12. doi: 10.13700/j.bh.1001-5965.2015.0078(in Chinese)

基于函数型数据的广义线性回归模型

doi: 10.13700/j.bh.1001-5965.2015.0078
基金项目: 国家自然科学基金(71420107025,11501586);国家"863"计划(SS2014AA012303);2014年度中央财经大学重大科研课题培育项目(基础理论类)
详细信息
    作者简介:

    王惠文女,博士,教授,博士生导师。主要研究方向:复杂数据分析。Tel.:010-82338143E-mail:wanghw@vip.sina.com;王思洋女,博士,讲师。主要研究方向:高维数据分析。Tel.:010-62288522E-mail:siyangw@163.com

    通讯作者:

    王思洋,Tel.:010-62288522E-mail:siyangw@163.com

  • 中图分类号: O212

Generalized linear regression model based on functional data analysis

Funds: National Natural Science Foundation of China (71420107025,11501586); National High-tech Research and Development Program of China (SS2014AA012303); 2014 Cultivation Project for Major Sciencific Research of Central University of Finance and Economics (Basic Theory)
  • 摘要: 函数型数据的回归分析研究主要集中在函数型线性模型。不要求因变量为连续型随机变量,可以为离散型或属性数据(对应于泊松或Logistic回归),对同时含有数值型多元变量和函数型变量的广义线性模型的估计问题进行分析,采用非参数方法得到了参数部分和非参数部分的估计量,并给出了一种重加权算法进行参数求解,解决了含数值型和函数型混合数据类型自变量的回归问题,同时扩展了函数型线性模型的应用范围。估计过程中,分别采用了函数型主成分和B样条基函数,并给出了基函数个数选择的准则。数值模拟结果表明,所提出方法具有良好的可行性与正确性。

     

  • [1] RAMSAY J O.When the data are functions[J].Psychometrika,1982,47(4):379-396.
    [2] MULLER H,WU Y,YAO F.Continuously additive models for nonlinear functional regression[J].Biometrika,2013,100(3):607-622.
    [3] DELSOL L,FERRATY F,VIEU P.Structural test in regression on functional variables[J].Journal of Multivariate Analysis,2011,102(3):422-447.
    [4] HE G,MULLER H,WANG J,et al.Functional linear regression via canonical analysis[J].Bernoulli,2010,16(3):705-729.
    [5] DELAIGLE A,HALL P.Classification using censored functional data[J].Journal of the American Statistical Association,2013,108(504):1269-1283.
    [6] HALL P,HOROWITZ J L.Methodology and convergence rates for functional linear regression[J].The Annals of Statistics,2007,35(1):70-91.
    [7] GHERIBALLAH A,LAKSACI A,SEKKAA S.Nonparametric M-regression for functional ergodic data[J].Statistics & Probability Letters,2013,83(3):902-908.
    [8] KATO K.Estimation in functional linear quantile regression[J].The Annals of Statistics,2012,40(6):3108-3136.
    [9] FERRATY F,GONZÁLEZ-MANTEIGA W,MARTÍNEZ-CALVO A,et al.Presmoothing in functional linear regression[J].Statistica Sinica,2012,22(1):69-94.
    [10] LIAN H.Shrinkage estimation and selection for multiple functional regression[J].Statistica Sinica,2013,23(1):51-74.
    [11] CANTONI E,RONCHETTI E.Robust inference for generalized linear models[J].Journal of the American Statistical Association,2001,96(455):1022-1030.
    [12] BOENTE G,HE X,ZHOU J.Robust estimates in generalized partially linear models[J].The Annals of Statistics,2006,34(6):2856-2878.
    [13] JAMES G M,WANG J,ZHU J.Functional linear regression that's interpretable[J].The Annals of Statistics,2009,37(5A):2083-2108.
    [14] CAMERON A C,TRIVEDI P K.Regression-based tests for overdispersion in the Poisson model[J].Journal of Econometrics,1990,46(3):347-364.
    [15] KIM M.Quantile regression with varying coefficients[J].The Annals of Statistics,2007,35(1):92-108.
  • 加载中
计量
  • 文章访问数:  745
  • HTML全文浏览量:  14
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 刊出日期:  2016-01-20

目录

    /

    返回文章
    返回
    常见问答