Thermal-structure coupling analysis and research of MSCMG
-
摘要: 作为新型航天器姿态机动执行机构,磁悬浮控制力矩陀螺(MSCMG)长时间工作在高真空环境下且高速转子完全悬浮,散热条件差,系统温度过高,导致陀螺组件产生较大的热应力,降低了陀螺结构部件的强度。为减小温度场对陀螺结构部件强度的影响,提高陀螺结构的可靠性,采用有限元法计算出磁悬浮控制力矩陀螺工作状态下的温度场,并基于温度场分析陀螺结构部件的应力分布情况,明确温度场对陀螺结构部件力学性能产生的影响。建立了陀螺热网络模型,根据热网络模型与热网络方程分析热量传递路径及温度影响因素,并提出相应的优化措施。经优化,定子组件最高温度从66.5℃降至49℃,转子组件最高温度从91.7℃降至76.9℃。陀螺定子组件的强度安全系数由1.52提升为1.73,提高了13.8%,陀螺转子组件的强度安全系数由1.32提升为1.56,提高了18.2%。Abstract: As a novel actuator for spacecraft attitude maneuver, magnetically suspended control moment gyroscope (MSCMG) operates in a high vacuum with high speed rotor suspended, leading to poor dissipating heat conditions and high system temperature, which result in the larger thermal stress and weaken the structure strength of MSCMG. To reduce the influence of temperature field on the strength of MSCMG components and improve the reliability of MSCMG structure, finite element method is applied to calculate the temperature field of MSCMG under the working state and analyze the stress distribution in MSCMG components based on the temperature field to understand the influence of temperature field on the mechanical properties of MSCMG components. Moreover, the thermal network model of MSCMG is established. The heat flux path and the factors influencing temperature are analyzed according to the thermal network model and the thermal network equations. And then, the optimization measurements are put forward. After optimization, the maximum temperature of stator assembly decreases from 66.5℃ to 49℃ and that of rotor assembly decreases from 91.7℃ to 76.9℃.In addition, the safety factor of stator assembly increases from 1.52 to 1.73 (increases by 13.8%) and that of rotor assembly increases from 1.32 to 1.56 (increases by 18.2%).
-
Key words:
- thermal stress /
- safety factor /
- finite element method /
- thermal network /
- temperature optimization
-
[1] FANG J C,SUN J J,XU Y L,et al.A new structure for permanent-magnet-biased axial hybrid magnetic bearings[J].IEEE Transactions on Magnetics,2009,45(12):5319-5325. [2] FANG J C,SUN J J,LIU H,et al.A novel 3-DOF axial hybrid magnetic bearing[J].IEEE Transactions on Magnetics,2010,46(12):4034-4045. [3] ZHANG S A,HAN B C,LI H,et al.Thermal and structural coupling analysis of magnetically suspended flywheel rotor[C]//6th International Symposium on Instrumentation and Control Technology:Sensors,Automatic Measurement,Control,and Computer Simulation.Bellingham,WA:SPIE,2006,5368:561-568. [4] 周超,杨洪波,王成彬.热传导及其在航天器系统中的计算方法[J].计算机仿真,2010,27(1):60-62. ZHOU C,YANG H B,WANG C B.Thermal conductivity and calculation methods for spacecraft[J].Computer Simulation,2010,27(1):60-62(in Chinese). [5] 周廷美,何庆,周浩,等.基于热网络法的汽车变速器热平衡分析[J].机械传动,2014,38(3):143-146. ZHOU T M,HE Q,ZHOU H,et al.Heat balance analysis of the automobile transmission based on the thermal network method[J].Mechanical Transmission,2014,38(3):143-146(in Chinese). [6] 张启胤,连晋毅,吴新,等.基于热网络法的工程车辆传动箱稳态热分析[J].机械科学与技术,2012,31(6):977-981. ZHANG Q Y,LIAN J Y,WU X,et al.Analysis steady-state heat balance of construction vehicle's transmission gearbox using thermal network method[J].Mechanical Science and Technology for Aerospace Engineering,2012,31(6):977-981(in Chinese). [7] CO H,ZHENG L P,MCMULLEN P.Thermal performance evaluation of a high-speed flywheel energy storage system[C]//Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society,IECON.Piscataway,NJ:IEEE Press,2007:163-171. [8] 黄飞,马希直.基于热网络法的行星减速器温度场研究[J].机械传动,2011,35(4):19-22. HUANG F,MA X Z.Study on temperature field of planetary reduction gear based on thermal network[J].Mechanical Transmission,2011,35(4):19-22(in Chinese). [9] 张姝娜,房建成,韩邦成,等.磁悬浮飞轮转子组件温度场分析与研究[J].中国惯性技术学报,2007,15(1):67-71. ZHANG S N,FANG J C,HAN B C,et al.Thermal analysis and research on magnetically suspended flywheel rotor[J].Journal of Chinese Inertial Technology,2007,15(1):67-71(in Chinese). [10] 段吉安,郭宁平,周海波.一种新型磁悬浮直线运动平台的热分析[J].中国电机工程学报,2011,31(15):114-120. DUAN J A,GUO N P,ZHOU H B.Thermal analysis of a novel linear maglev transportation platform[J].Proceeding of the CSEE,2011,31(15):114-120(in Chinese). [11] RO S K,KYUN J H.Study on the thermal characteristics of a magnetically suspended high speed machine tool spindle[C]//9th International Symposium on Magnetic Bearing.London:the British Library Board,2004:278-282. [12] 王春娥,房建成,汤继强,等.磁悬浮反作用飞轮热设计方法与实验研究[J].航空学报,2011,32(4):598-607. WANG C E,FANG J C,TANG J Q,et al.Thermal design method and experimental research of magnetically suspended reaction flywheel[J].Acta Aeronautica et Astronautica Sinica,2011,32(4):598-607(in Chinese). [13] TODA H,XIA Z P,WANG J B,et al.Rotor eddy-current loss in permanent magnet brushless machines[J].IEEE Transactions on Magnetics,2004,40(4):2104-2106. [14] YOSHIDA K,HITA Y,KESAMARU K.Eddy-current loss analysis in PM of surface-mounted-PM SM for electric vehicles[J].IEEE Transactions on Magnetics,2000,36(4):1941-1944. [15] MEEKER D C,FILATORV A V,MASLEN E H.Effect of magnetic hysteresis on rotational losses in heteropolar magnetic bearings[J].IEEE Transactions on Magnetics,2004,40(5):3302-3307.
点击查看大图
计量
- 文章访问数: 910
- HTML全文浏览量: 56
- PDF下载量: 548
- 被引次数: 0