Analysis of wings effects on locust-like robot air posture
-
摘要: 为验证蝗虫通过翅膀不对称运动进行空中姿态调整机理,设计了仿蝗虫空中姿态调整机器人系统,通过曲柄摇杆机构实现翅膀拍动。分析了机构特性,建立了翅膀拍动模型,计算了不同拍动频率、不同拍动幅值下翅膀受力及力矩情况,分析了左右翅膀同步拍动与异步拍动时对机体产生的影响。最后,搭建了实验验证平台,实验结果表明,左右翅膀的同步拍动不会引起机体姿态较大变动,而两侧翅膀拍动相位的不同将引起机体来回摆动,拍动幅值的不同将引起机体的滚转运动,且拍动频率越高,机体滚转越明显。证明了蝗虫利用翅膀不同步运动进行空中姿态调整机理的正确性,也为仿蝗虫机器人空中姿态调整设计提供了依据。Abstract: To verify the mechanism that locusts adjust their posture in air by flapping wings asynchronously, the air posture adjustment locust-like robot system has been designed which realized the flapping of wings with the crank-rocker structure. The structure characteristics have been analyzed and the wings flapping model has been established. Then, the forces and torques acting on the wings under different flapping frequencies and different amplitudes have been calculated. The influences on the body with synchronous and asynchronous flapping of wings have also been analyzed. Finally, an experimental platform has been built and a series of experiments have been implemented. Results indicate that synchronous flapping of left and right wings does not induce body posture change greatly while different phases of each side of wings will cause the body swing. Furthermore, different flapping amplitudes will induce the body roll and the higher flapping frequency is,the more obvious the body rolling phenomenon is. The experiments have verified the correctness of the mechanism of locust air posture adjustment by the ways of asynchronous wings motion and have provided the basis for the design of the air posture adjustment locust-like robot.
-
[1] LIBBY T,MOORE T Y,CHANG-SIU E,et al.Tail-assisted pitch control in lizards,robots and dinosaurs[J].Nature,2012,481(7380):181-184. [2] CHANG-SIU E,LIBBY T,TOMIZUKA M,et al.A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press,2011:1887-1894. [3] ZHAO J,ZHAO T,XI N,et al.Controlling aerial maneuvering of a miniature jumping robot using its tail[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press,2013:3802-3807. [4] CHENG B,DENG X,HEDRICK T L.The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta)[J].The Journal of Experimental Biology,2011,214(24):4092-4106. [5] XU N,SUN M.Lateral dynamic flight stability of a model bumblebee in hovering and forward flight[J].Journal of Theoretical Biology,2013,319:102-115. [6] SU J Y,TING S C,YANG J T.How a small bird executes a sharp turning maneuver:A mechanical perspective[J].Experimental Mechanics,2012,52(7):693-703. [7] ROBERTSON R M,JOHNSON A G.Collision avoidance of flying locusts:Steering torques and behaviour[J].Journal of Experimental Biology,1993,183(10):35-60. [8] ROBERTSON R M,KUHNERT C T,DAWSON J W.Thermal avoidance during flight in the locust locusta migratoria[J].Journal of Experimental Biology,1996,199(6):1383-1393. [9] GAISSERT N,MUGRAUER R,MUGRAUER G,et al.Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight[M].Towards Autonomous Robotic Systems.Berlin,Heidelberg:Springer,2014:90-100. [10] WOODWARD M A,SITTI M.Design of a miniature integrated multi-modal jumping and gliding robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Piscataway,NJ:IEEE Press,2011:556-561. [11] KOVAC M,HRAIZ W,FAURIA O,et al.The EPFL jumpglider:A hybrid jumping and gliding robot with rigid or folding wings[C]//IEEE International Conference on Robotics and Biomimetics.Piscataway,NJ:IEEE Press,2011:1503-1508. [12] DESBIENS A L,POPE M T,CHRISTENSEN D L,et al.Design principles for efficient,repeated jumpgliding[J].Bioinspiration & Biomimetics,2014,9(2):025009. [13] 程友联,吴晓红.曲柄摇杆机构的参数设计法[J].机械设计,2010(9):60-62. CHENG Y L,WU X H.Parameter design method of crank-rocker mechanism[J].Journal of Machine Design,2010(9):60-62. [14] OERTEL H,ERHARD P,ASFAW K,et al.Prandtl-essentials of fluid mechanics[M].New York:Springer,2010:212-259. [15] DICKINSON M H,LEHMANN F O,SANE S P.Wing rotation and the aerodynamic basis of insect flight[J].Science,1999,284(5422):1954-1960.
点击查看大图
计量
- 文章访问数: 1055
- HTML全文浏览量: 147
- PDF下载量: 521
- 被引次数: 0