Object detection and segmentation algorithm in complex dynamic scene
-
摘要: 在动态场景等复杂条件下,往往难以对序列图像目标进行准确的检测与分割。根据序列图像中目标在复杂条件下的成像特点,提出了一种基于融合尺度不变特征变换(SIFT)流特征显著模型的动态场景目标检测与分割算法。通过对SIFT流算法表示运动特征信息的优势进行分析,并结合图像国际照明协会(CIE)Lab颜色空间的颜色和亮度特征信息,建立四维特征向量空间。利用改进的多尺度中心-环绕对比方法生成各特征通道的显著图并进行线性融合,建立序列图像的动态场景目标显著模型。最后利用均值漂移聚类算法和形态学处理实现对检测目标的精确分割。实验结果表明,相比传统检测与分割算法,该算法在动态背景与航拍等复杂场景下能够分割出更为完整的目标区域,具有良好的鲁棒性和高分割精度。
-
关键词:
- 显著性检测 /
- 运动目标 /
- 尺度不变特征变换(SIFT)流 /
- 图像分割 /
- 动态场景
Abstract: In complex conditions of dynamic scenes, it is difficult to detect and segment objects accurately in image sequence. According to the image characteristics of the object in complex conditions, we propose an object detection and segmentation model which was fused with scale invariant feature transform (SIFT) Flow characteristics in dynamic scene. Through analyzing the advantages of the movement characteristic information by SIFT Flow, and combining the color and brightness information in Commission Internationale de L'Eclairage (CIE) Lab, we establish a four-dimensional vector space. We utilize the improved multi-scale center-surround comparison method to generate salient map in each channel and fuse by linear superposition, then establish the dynamic scene saliency object model in image sequence. Finally, mean-shift clustering algorithm and morphology are used to achieve object segmentation accurately. Experimental results indicate that the proposed method can segment more complete object region than the traditional method in complex dynamic scenes and aerial video. And it also has good robustness and high segmentation accuracy. -
[1] POJALA C,SOMNATH S.Neighborhood supported model level fuzzy aggregation for moving object segmentation[J].IEEE Transactions on Image Processing,2014,23(2):645-657. [2] 黎万义,王鹏,乔红.引入视觉注意机制的目标跟踪方法综述[J].自动化学报,2014,40(4):561-576. LI W Y, WANG P,QIAO H.A survey of visual attention based methods for object tracking[J].Acta Automatica Sinica,2014,40(4):561-576(in Chinese). [3] 解晓萌. 复杂背景下运动目标检测和识别关键技术研究[D].广州:华南理工大学,2012:1-30. XIE X M.Research on key techniques of moving object detection and recognition in complex background[D].Guangzhou:South China University of Technology,2012:1-30(in Chinese). [4] ZIVKOVIC Z, VAN DER HEIJDEN F.Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters,2006,27(7):773-780. [5] LIN H H, CHUANG J H,LIU T L.Regularized background adaptation:A novel learning rate control scheme for Gaussian mixture modeling[J].IEEE Transactions on Image Processing,2011,20(3):822-836. [6] XU L, CHEN J N,JIA J Y.A segmentation based variational model for accurate optical flow estimation[C]//Proceedings of the 10th European Conference on Computer Vision.Berlin:Springer,2008,5302(1):671-684. [7] LIU C, YUEN J,TORRALBA A.SIFT Flow:Dense correspondence across scenes and its applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(5):978-994. [8] CHEN X, ZHAO H W,LIU P P,et al.Automatic salient object detection via maximum entropy estimation[J].Optics Letters,2013,38(10):1727-1729. [9] ITTI L. Automatic foveation for video compression using a neurobiological model of visual attention[J].IEEE Transactions on Image Processing,2004,13(10):1304-1318. [10] HOU X D, ZHANG L Q.Saliency detection:A spectral residual approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2007:1-8. [11] GUO C L, ZHANG L M.A novel multire solution spatiotemporal saliency detection model and its applications in image and video compression[J].IEEE Transactions on Image Processing,2010,19(1):185-198. [12] 魏国剑, 侯志强,李武.融合颜色不变量的彩色图像光流估计算法[J].电子与信息学报,2013,35(12):2927-2933. WEI G J,HOU Z Q,LI W.Color image optical flow estimation algorithm fused with color invariants[J].Journal of Electronics & Information Technology,2013,35(12):2927-2933(in Chinese). [13] MANJUNATH N, ALLEN H,ERIK L M.Coherent motion segmentation in moving camera videos using optical flow orientations[C]//Proceedings of the IEEE Conference on Computer Vision.Piscataway,NJ:IEEE Press,2013:1577-1584. [14] MEER P. Robust techniques for computer vision[C]//Proceedings of Emerging Topics in Computer Vision.Upper Saddle River,NJ:Prentice Hall,2004:107-190. [15] ACHANTA R, ESTRADA F,WILS P,et al.Salient region detection and segmentation[C]//Proceedings of the International Conference on Computer Vision Systems.Piscataway,NJ:IEEE Press,2008:66-75. [16] 魏昱. 图像显著性区域检测方法及应用研究[D].济南:山东大学,2012:19-34. WEI Y.Research on image salient region detection methods and applications[D].Jinan:Shandong University,2012:19-34(in Chinese). [17] RAHTU E, KANNALA J.Segmenting salient objects from images and videos[C]//Proceedings of the 11th European Conference on Computer Vision.Berlin:Springer,2010:366-379. [18] PETER O, JITENDRA M,THOMAS B.Segmentation of moving objects by long term video analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(6):1187-1200. [19] CHENG M M, NILOY J,HUANG X L,et al.Global contrast based salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2011:409-416. [20] ACHANTA R, HEMAMI S,ESTRADA F.Frequency-tuned salient region detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2009:1597-1604.
点击查看大图
计量
- 文章访问数: 1170
- HTML全文浏览量: 72
- PDF下载量: 842
- 被引次数: 0