Surface temperature distribution of molten pool by ultra high frequency pulsed GTAW
-
摘要: 针对5 mm厚Ti-6Al-4V钛合金平板完成焊接熔池红外热成像监测,研究分析了超高频脉冲钨极氩弧焊(UHFP-GTAW)熔池表面温度分布,与常规GTAW(C-GTAW)熔池表面温度分布进行了比较。结果表明,在均为定点加热母材20 s的条件下,与C-GTAW工艺相比,UHFP-GTAW电弧(20 kHz、40 kHz)作用下的熔池中心表面温度测量值增加了10~30 K;分别以不同温度(678 K、823 K和968 K)为参考值测量熔池表面的高温扩散区域,UHFP-GTAW所得试样的高温扩散面积缩小范围为13%~30%。基于热量、力作用和复合散热等要素构建了熔池模型分析其温度场分布特点,计算结果与试验数据基本相符。
-
关键词:
- 超高频脉冲钨极氩弧焊 (UHFP-GTAW) /
- 焊接熔池 /
- 电弧焊 /
- 温度分布 /
- 红外热像
Abstract: Thermal observation of molten pool was carried out with Ti-6Al-4V plates (with thickness of 5 mm). The molten pool surface temperature distribution of ultra high frequency pulsed gas tungsten arc welding (UHFP-GTAW) was collected and analyzed by infrared imaging monitor. Compared with conventional GTAW (C-GTAW), the test results indicate that the surface temperature of molten pool center increases by 10-30 K with UHFP-GTAW(20 kHz, 40 kHz) after heating the base metal 20 seconds; meanwhile, the areas of the elevated temperature distribution were measured referring to varying temperature (678 K,823 K,968 K), which are reduced by the range of 13%-30%. A two-dimensional numerical model of molten pool was established, considering the essential factors such as heat flux, force and mixed heat transfer, to explore the characteristics of the temperature distribution in the molten pool. The calculated results of the above model are basically consistent with the test data. -
[1] 莱茵斯C,皮特尔斯M. 钛与钛合金[M].陈振华,等,译.北京:化学工业出版社,2005:26. LEYENS C,PETERS M.Titanium and titanium alloys[M].CHEN Z H,et al,translated.Beijing:Chemical Industry Press,2005:26(in Chinese). [2] MORGAN D, PHILIPPE L M,MURIEL C.A model comparison to predict heat transfer during spot GTA welding[J].International Journal of Thermal Sciences,2014,75:54-64. [3] FAN H G, TSAI H L,NA S J.Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding[J].International Journal of Heat and Mass Transfer,2000,44(2):417-428. [4] DONG W, LU S,LI D,et al.GTAW liquid pool convections and the weld shape variations under helium gas shielding[J].International Journal of Heat and Mass Transfer,2011,54(7-8):1420-1431. [5] MURPHY A B, TANAKA M,YAMAMOTO K,et al.Modelling of arc welding:The importance of including the arc plasma in the computational domain[J].Vacuum,2010,85(5):579-584. [6] TRAIDIA A, ROGER F.Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J].International Journal of Heat and Mass Transfer,2011,54(9-10):2163-2179. [7] MURPH A B, TANAKA M,YAMAMOTO K,et al.Modelling of thermal plasmas for arc welding:The role of the shielding gas properties and of metal vapour[J].Journal of Physics D:Applied Physics,2009,42:194006. [8] SCHNICK M, ZSCHETZSCHE M D J.Visualization and optimization of shielding gas flows in arc welding[J].Welding in the World,2012,56(1-2):54-61. [9] 杨明轩,从保强,齐铂金,等. 脉冲电流参数对奥氏体不锈钢电弧行为的影响[J].焊接学报,2012,33(10):67-70. YANG M X,CONG B Q,QI B J,et al.The influence of pulse current parameters on arc behavior by austenite stainless steel[J].Transactions of the China Welding Institution,2012,33(10):67-70(in Chinese). [10] YANG M X, YANG Z, CONG B,et al.Study on surface depression of molten pool with pulsed welding[J].Welding Journal,2014,93(8):312-319. [11] 杨舟,齐铂金,杨明轩. 超高频GTAW工艺特性分析[J/OL].机械工程学报,(2015-10-22)[2015-12-14].http://www.cnki.net/kcms/detail/11.2187.TH.20151022.1457.004.html. YANG Z,QI B J,YANG M X.Analysis on characteristics of ultra high frequency pulsed gas tungsten arc welding process[J/OL].Journal of Mechanical Engineering,(2015-10-22)[2015-12-14].http://www.cnki.net/kcms/detail/11.2187.TH.20151022.1457.004.html (in Chinese). [12] YANG M X, QI B J,CONG B Q,et al.Study on electromagnetic force of arc plasma with by ultra high frequency pulsed GTAW of Ti-6Al-4V[J].IEEE Transactions on Plasma Science,2013,41(9):2561-2568. [13] 杨舟,齐铂金,从保强,等. 脉冲电流频率对TC4钛合金焊缝成形的影响[J].焊接学报,2013,34(12):37-40. YANG Z,QI B J,CONG B Q,et al.Effect of pulse frequency on weld appearance behavior of TC4 titanium alloys[J].Transactions of the China Welding Institution,2013,34(12):37-40(in Chinese). [14] QI Y L,JU D, QUAN H,et al.Electron beam welding,laser beam welding and gas tungsten arc welding of titanium sheet[J].Materials Science and Engineering A,2000,280(1):177-181. [15] BAESLACK W, BANAS C M.A comparative evaluation of laser and gas tungsten arc weldments in high temperature titanium alloys[J].Welding Journal,1981,60(7):121-s-130-s. [16] BALASUBRAMANIAN M, JAYABALAN V,BALASUBRAMANIAN V.Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy[J].Material and Design,2008,29(1):92-97. [17] BABU N K, RAMAN S G S.Influence of current pulsing on microstructure and mechanical properties of Ti-6Al-4V TIG weldments[J].Science and Technology of Welding and Joining,2006,11(4):442-447. [18] GARLAND J G. Weld pool solidification control[J].Metal Construction and British Welding Journal,1974,6(4):25. [19] SIMPSON R P. Controlled weld-pool solidification structure and resultant properties with Yttrium inoculation of Ti-6Al-6V-2Sn welds[J].Welding Journal,1977,56(3):67-s-77-s. [20] PETERS J O, LUTERJING G.Comparison of the fatigue and fracture of α+β and β titanium alloys[J].Metallurgical and Materials Transactions A,2001,32(11):2805-2818.
点击查看大图
计量
- 文章访问数: 919
- HTML全文浏览量: 116
- PDF下载量: 512
- 被引次数: 0