Spacecraft electrical signal classification method based on improved artificial neural network
-
摘要: 根据航天器系统级电性能测试工作中数据量大、任务繁重的特点,设计了基于人工神经网络的智能分类系统,对原始测试数据进行智能化分类,将非线性的调试经验以数据的形式储备,可在减少测试工作中对人为经验依赖的同时为航天器信号识别快速提供专家知识。考虑到经典的人工神经网络系统有训练时间长和对网络初始权值的依赖程度高等不足,利用主成分分析对数据进行压缩和自动编码技术对网络权值进行初始化。实验数据测试表明:与传统方法相比,本文提出的改进学习系统的分类准确率、稳定性和响应速度均得到显著提高。Abstract: To solve the problem of multiple data and arduous task in the aircraft test and intellectualize the management of the testing work, an intelligent classification system based on artificial neural networks was designed. The system can classify the original test data intelligently, reduce the workload and reliance on testing experience and store the nonlinear debugging experience in the form of expert database. This system has many deficiencies, such as, long training time and high dependence on the initial threshold. To this end, the principal component analysis was used to compress the raw data and auto-encoder in deep learning was applied to initialize the network weights. Experimental data indicates that compared with traditional methods, the accuracy, stability and response speed of the improved learning system are significantly increased.
-
[1] LI K,LIU W K, WANG J,et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics,2013,26(6):1360-1369. [2] LIU Y,LI K, SONG S,et al.The research of spacecraft electrical characteristics identification and diagnosis using PCA feature extraction signal processing[C]//International Conference on Signal Processing(ICSP).Piscataway,NJ:IEEE Press,2014:1413-1417. [3] LIU Y,LI K, HUANG Y,et al.Spacecraft electrical characteristics identification study based on offline FCM clustering and online SVM classifier[C]//Multisensor Fusion and Information Integration for Intelligent Systems(MFI).Piscataway,NJ:IEEE Press,2014:1-4. [4] LI K,LIU W K, WANG J,et al.Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin[J].Chinese Journal of Aeronautics,2014,27(6):1390-1400. [5] 杨天社,杨开忠, 李怀祖.基于知识的卫星故障诊断与预测方法[J].中国工程科学,2003,5(6):64-67. YANG T S,YANG K Z,LI H Z.Research on knowledge-based method for satellite fault diagnosis and prediction[J].Engineering Science,2003,5(6):64-67(in Chinese). [6] 韩立群. 人工神经网络[M].北京:北京邮电大学出版社,2006:20-66. HAN L Q.Artificial neural networks[M].Beijing:Beijing University of Posts and Telecommunications Press,2006:20-66(in Chinese). [7] 冯伟兴,梁洪, 王臣业.Visual C++数字图像模式识别典型案例详解[M].北京:机械工业出版社,2012:50-63. FENG W X,LIANG H,WANG C Y.Visual C++digital image pattern recognition detailed typical case[M].Beijing:China Machine Press,2012:50-63(in Chinese). [8] 秦振汉. 人工神经网络专家系统在卫星故障诊断中的应用研究[D].哈尔滨:哈尔滨工业大学,2005:8-12. QIN Z H.Application of neural network expert system in satellite fault diagnosis[D].Harbin:Harbin Institute of Technology,2005:8-12(in Chinese). [9] HUANG H, ZHU Y W,YANG L P,et al.Stability and shape analysis of relative equilibrium for three-spacecraft electromagnetic formation[J].Acta Astronautica,2014,94(1):116-131. [10] KENIG S, BEN-DAVID A,OMER M,et al.Control of properties in injection molding by neural networks[J].Engineering Applications of Artificial Intelligence,2001,14(6):819-823. [11] 戴文战,娄海川, 杨爱萍.非线性系统人工神经网络预测控制研究进展[J].控制理论与应用,2009,26(5):521-530. DAI W Z,LOU H C,YANG A P,et al.An overview of neural network predictive control for nonlinear systems[J].Control Theory & Applications,2009,26(5):521-530(in Chinese). [12] 姚健,纪志成,黄言平. 基于人工神经网络的非线性多模型自适应控制[J].控制工程,2014,21(2):172-177. YAO J,JI Z C,HUANG Y P.Nonlinear multi-model adaptive control based on neural networks[J].Control Engineering of China,2014,21(2):172-177(in Chinese). [13] LEE C Y,LEE J J. Adaptive control for uncertain nonlinear systems based on multiple neural networks[J].IEEE Transactions on Systems,Man and Cybernetics-Part B:Cybernetics,2004,34(1):325-333. [14] VRABIE D, LEWIS F.Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems[J].Neural Networks,2009,22(3):237-246. [15] 林海明,杜子芳. 主成分分析综合评价应该注意的问题[J].统计研究,2013,30(8):25-31. LIN H M,DU Z F.Some problems in comprehensive evaluation in the principal component analysis[J].Statistical Research,2013,30(8):25-31(in Chinese). [16] SCHÖLKOPF B, PLATT J,HOFMANN T.Greedy layer-wise training of deep networks[C]//Proceedings of the 2006 Conference, Advances in Neural Information Processing Systems. Cambridge:MIT Press,2007,19:153-160. [17] HINTON G E, OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
点击查看大图
计量
- 文章访问数: 997
- HTML全文浏览量: 79
- PDF下载量: 544
- 被引次数: 0