Fluid-pipe coupling axis vibration characteristics induced by foundation vibration
-
摘要: 针对轴向基础振动对管道和流体波动的影响,运用轴向基础振动下液压直管道轴向耦合振动数学模型,推导了4种不同管端约束方式下的边界条件,并采用特征线法对不同约束方式下基础振动诱发的管内流体波动进行了研究,分析了管端约束方式、约束刚度、基础振动参数、结构参数对管道出口压力波动幅值的影响。结果表明:与两端固定约束相比,出口轴向自由和入口轴向自由时出口流体压力波动幅值分别增大了很多,且出口处约束刚度越大,压力波动幅值越小;基础振动频率越大,流固耦合作用越剧烈;压力波动幅值随基础振动幅值增大而线性增大;流体流经管道的距离越长,流体波动越剧烈。分析结果能为制定相应的管道振动控制策略提供理论依据。Abstract: In view of the effect of axial foundation vibration on pipe and fluid fluctuation, an axial coupling vibration mathematical model of direct hydraulic pipeline was used to deduce boundary conditions under four different pipe end constraints, and method of characteristics was adopted to study the fluid fluctuation in pipe induced by foundation vibration under different constraints. The influences of bound manner, restraint stiffness, foundation vibration parameters and structural parameters on pipe outlet pressure fluctuation amplitude were analyzed. The results indicate that the outlet pressure fluctuation amplitudes increase a lot respectively when export axial and entrance axial are free, compared with fixed constraints of both ends. And the greater the exit restraint stiffness is, the smaller the pressure fluctuation amplitude is; the higher vibration frequency is, the stronger fluid-solid interaction is; the pressure fluctuation amplitude increases linearly with the increase of foundation vibration amplitude; the longer the distance of fluid flowing through the pipe is, the severer the fluid fluctuating is. The analysis results could provide a theoretical basis for the formulation of corresponding pipe vibration control strategy.
-
[1] TIJSSELING A S. Water hammer with fluid-structure interaction in thick-walled pipes[J].Computers and Structures,2007,85(1):844-851. [2] JEONG H Y, INABA K.Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials[J].Journal of Fluids and Structures,2013,36(2):162-173. [3] RIEDELMEIER S, BECKER S,SCHLUCKER E.Measurements of junction coupling during water hammer in piping systems[J].Journal of Fluids and Structures,2014,48(2):156-168. [4] HAN J H, KIMA Y J,KARKOY M.Wave propagation modeling of fluid-filled pipes using hybrid analytical/two-dimensional finite element method[J].Wave Motion,2014,51(1):1193-1208. [5] 吕海艳. 输流管道流固耦合振动的频域分析[D].南京:河海大学,2006:10-18. LV H Y.Anaylsis of fluid-structure interaction eeffct on frequency domain in delviery pipeline[D].Nanjing:Hehai University, 2006:10-18(in Chinese). [6] 杨超,范士娟. 输液管道流固耦合振动的数值分析[J].振动与冲击,2009,28(6):2148-2157. YANG C,FAN S J.Numerical ananlysis of fluidstructure coupling vibration of fluid-conveying[J].Journal of Vibration and Shock,2009,28(6):2148-2157(in Chinese). [7] 杨超. 非恒定流充液管系统耦合振动特性及振动抑制[D].武汉:华中科技大学,2007:9-16. YANG C.Vibration characteristics of unsteady-fluid-filled pipe system and vibration restrain[D].Wuhan:Huazhong University of Science and Technology,2007:9-16(in Chinese). [8] PEROTTI L E, DEITERDING R,INABA K,et al.Elastic response of water-filled fiber composite tubes under shock wave loading[J].International Journal of Solids and Structures,2013,50(7):473-486. [9] KUCIENSKA B, SEYNHAEVE J M,GIOT M.Friction relaxation model for fast transient flows application to water hammer in two-phase flow-The WAHA code[J].International Journal of Multiphase Flow,2008,34(1):188-205. [10] ROCHA R G, DE FREITAS RACHID F B.Numerical solution of fluid-structure interaction in piping systems by Glimm's method[J].Journal of Fluids and Structures,2012,28(2):392-415. [11] ZHU H J, ZHANG W L,FENG G.et al.Fluid structure interaction computational analysis of flow field shear stress distribution and deformation of three-limb pipe[J].Engineering Failure Analysis, 2014,42(1):252-262. [12] 谢敬华. 盾构液压系统流固耦合长管道效应研究[D].长沙:中南大学,2010:12-15. XIE J H.Long pipeline effect of the shield machine based on fluid-structure interaction[D].Changsha:Central South University,2014:12-15(in Chinese). [13] 李松,马建中, 高李霞,等.水锤引起的管道振动特性分析[J].核动力工程,2008,29(6):25-29. LI S,MA J Z,GAO L X,et al.Analysis of pipeline evirbation induced by water hammer[J].Nuclear Power Engineering,2008,29(6):25-29(in Chinese). [14] 李飞,孙凌玉, 张广越,等.圆柱壳结构入水过程的流固耦合仿真与试验[J].北京航空航天大报,2007,33(9):1117-1120. LI F,SUN L Y ZHANG G Y,et al.Smiulation and expermient of cylinder shell structure dropping into water based on fluid structure interaction[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(9):1117-1120(in Chinese). [15] ARICI M E. Heat transfer analysis for a concentric tube heat exchanger including the wall axial conduction[J].Heat Transfer Engineering,2010,35(2):152-159. [16] 何永森,刘邵英. 机械管内流体数值预测[M].北京:国防工业出版社,1999:76-85. HE Y S,LIU S Y.Numerical prediction of fluid in mechanical pipe[M].Beijing:National Defense Industry Press,1999:76-85(in Chinese).
点击查看大图
计量
- 文章访问数: 1021
- HTML全文浏览量: 186
- PDF下载量: 580
- 被引次数: 0