留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期结构电磁特性在高频真空器件中的应用

冯进军 蔡军 胡银富 邬显平

冯进军, 蔡军, 胡银富, 等 . 周期结构电磁特性在高频真空器件中的应用[J]. 北京航空航天大学学报, 2015, 41(10): 1785-1791. doi: 10.13700/j.bh.1001-5965.2015.0209
引用本文: 冯进军, 蔡军, 胡银富, 等 . 周期结构电磁特性在高频真空器件中的应用[J]. 北京航空航天大学学报, 2015, 41(10): 1785-1791. doi: 10.13700/j.bh.1001-5965.2015.0209
FENG Jinjun, CAI Jun, HU Yinfu, et al. Application of dispersion characteristics of periodic structures for high frequency vacuum devices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1785-1791. doi: 10.13700/j.bh.1001-5965.2015.0209(in Chinese)
Citation: FENG Jinjun, CAI Jun, HU Yinfu, et al. Application of dispersion characteristics of periodic structures for high frequency vacuum devices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1785-1791. doi: 10.13700/j.bh.1001-5965.2015.0209(in Chinese)

周期结构电磁特性在高频真空器件中的应用

doi: 10.13700/j.bh.1001-5965.2015.0209
基金项目: 国家重点基础研究发展计划(2013CB933602)
详细信息
    通讯作者:

    冯进军(1966-),男,山西运城人,研究员,fengjinjun@tsinghua.org.cn,主要研究方向为真空电子学、微电子技术及毫米波太赫兹电子学等.

  • 中图分类号: V221+.3

Application of dispersion characteristics of periodic structures for high frequency vacuum devices

  • 摘要: 作为行波类真空电子器件的核心组件,慢波结构是一种周期结构,其场可以有无限多个模式,每个模式由无穷多个空间谐波构成.每个空间谐波有相应的色散曲线且曲线各段有不同的特性.提出了周期结构色散特性的全维度开发的概念,并以一种可用微电机系统(MEMS)技术加工的折叠波导(FWG)慢波结构为例,对其色散特性进行了分析,利用这些色散特性开展了行波管(TWT)、返波管(BWO)等传统器件的研究工作,同时提出了过模器件、带边振荡器(BO)和谐波放大器(THAT)等新型器件,这些器件的实验研究则以W波段及其以上频率为主,最后给出了突破的关键技术以及测试得到的器件的主要性能.

     

  • [1] 任大鹏,冯进军.太赫兹真空源斜注管高频结构研究[J].微波学报,2010(S1):551-553.Ren D P,Feng J J.Study on slow wave structure of the THz clinotron[J].Journal of Microwaves,2010(S1):551-553(in Chinese).
    [2] 冯进军.集成真空电子学[J].真空电子技术,2010(2):1-7.Feng J J.Integrated vacuum electronics[J].Vacuum Electronics,2010(2):1-7(in Chinese).
    [3] 冯进军,廖复疆,朱敏,等.微型真空电子器件技术研究[J].真空电子技术,2005(6):8-16.Feng J J,Liao F J,Zhu M,et al.Study on micro vacuum electron devices technology[J].Vacuum Electronics,2005(6):8-16(in Chinese).
    [4] Shvets G.Applications of electromagnetic metamaterials to vacuum electronics devices and advanced accelerators[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2014:14466902.
    [5] 杨乐,廖复疆.高阻抗电磁表面及其在真空电子器件中的应用[J].真空电子技术,2008(5):29-31.Yang L,Liao F J.High impedance electromagnetic surface and application in vacuum electron devices[J].Vacuum Electronics,2008(5):29-31(in Chinese).
    [6] Caloz C,Itoh T.Metamaterials for high-frequency electronics[J].Proceedings of the IEEE,2005,93(10):1744-1752.
    [7] 张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,1994:403.Zhang K Q,Li D J.Electromagnetic theory for microwaves and optoelectronics[M].Beijing:Publishing House of Electronics Industry,1994:403(in Chinese).
    [8] 冯进军,唐烨,李含雁,等.短毫米波和太赫兹线性注真空器件研究[J].真空电子技术,2013(1):1-9.Feng J J,Tang Y,Li H Y,et al.Study on linear beam vacuum electron devices in sub-millimeter wave and THz[J].Vacuum Electronics,2013(1):1-9(in Chinese).
    [9] Cai J,Feng J J,Wu X P,et al.Analysis and test preparation of attenuator for W-band FWG TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2007:9855417.
    [10] Hu Y F,Feng J J.3D simulation of electron gun and beam transport for W-band TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2007:9855438.
    [11] Hu Y F,Feng J J,Cai J,et al.A broadband microwave window for W-band TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2008:376-377.
    [12] Feng J J,Cai J,Wu X P,et al.Design investigation of 10W W-band FWG TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2007:9855428.
    [13] Hu Y F,Feng J J,Cai J,et al.Performance enhancement of W-band CW TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2011:21-22.
    [14] Hu Y F,Feng J J,Cai J,et al.Development of W-band CW TWT amplifier[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2012:295-296.
    [15] Feng J J,Cai J,Hu Y F.Development of W-band FWG pulsed TWTs[J].IEEE Transactions on Electron Devices,2014,61(6):1721-1725.
    [16] Hu Y F,Feng J J,Cai J,et al.Design and experimental study of wide bandwidth W-band FWG continuous-wave TWT[J].IEEE Transactions on Plasma Science,2014,42(10):3380-3386.
    [17] Cai J,Feng J J,Hu Y F,et al.10GHz bandwidth 100watt W-band FWG pulsed TWTs[J].IEEE Microwave and Wireless Components Letters,2014,24(9):620-621.
    [18] Pan P,Hu Y F,Liu J K,et al.Preliminary design of a 220GHz FWG TWT[C]∥Proceedings of IEEE International Vacuum Electronics Conference.Piscataway,NJ:IEEE Press,2014:249-250.
    [19] 胡银富,冯进军,蔡军,等.W波段大功率梯形线行波管的设计与仿真[J].真空科学与技术学报,2014,34(3):294-299.Hu Y F,Feng J J,Cai J,et al.Design and simulation of W-band high power ladder TWT[J].Chinese Journal of Vacuum Science and Technology,2014,34(3):294-299(in Chinese).
  • 加载中
计量
  • 文章访问数:  956
  • HTML全文浏览量:  69
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2015-05-08
  • 网络出版日期:  2015-10-20

目录

    /

    返回文章
    返回
    常见问答