Damage resistance property of stiffened composite panels under low-velocity impact
-
摘要: 为确定冲击能量、几何尺寸对低速冲击下复合材料加筋板损伤阻抗性能的影响,对3组工型加筋板进行了试验和数值模拟研究。通过落锤式低速冲击试验,得到了试验件的接触历程、凹坑深度和分层面积等损伤特征。基于引入纤维断裂损伤的各向异性弹塑性理论建立了有限元(FE)模型,对试验件凹坑深度进行了模拟预测,模拟结果与试验结果吻合较好。研究表明,复合材料加筋板凹坑深度随冲击能量的变化曲线存在拐点,拐点后表面冲击部位出现纤维断裂。随着冲击能量的增大,试验件的最大接触力不断增大,而分层起始载荷及分层面积则变化不大。含1.5 mm深凹坑试验件对应的冲击能量和最大接触力随筋条或蒙皮厚度的增大而不断增大,而分层起始载荷仅随蒙皮厚度的增大而增大。Abstract: In order to study the effect of impact energy and structural geometry on damage resistance of stiffened composite panels under low-velocity impact, 3 groups of I-section stringer-stiffened composite panels were experimentally and numerically investigated. Drop weight low-velocity impact tests were conducted to capture the damage characteristics such as impact force histories, indentation depths and delamination areas. Finite element (FE) models were established based on an anisotropic elato-plastic theory incorporating fiber failure. Indentation depths of the specimens were simulated by the FE models. The simulated results are coordinated with the tested results very well. The results indicate that there is a knee point for the curve of impact energy and dent depth of stiffened composite panels. Some fiber breakage at the impact location on the surface of specimens can be found after the knee point occurs. The maximum impact force increases with the increasing impact energy, while the delamination initiation load and delamination area do not. The impact energy and the maximum impact force of specimens containing 1.5 mm indentation increase with the increasing thickness of skin or stiffener while the delamination initiation load only increases with the increasing thickness of skin.
-
[1] 孙侠生. 民用飞机结构强度刚度设计与验证指南(第三册)[M].北京:航空工业出版社,2012:277-280. SUN X S.Guidelines for strength and stiffness design and verification of civil aircraft structures (Vol.3)[M].Beijing:Aviation Industry Press,2012:277-280(in Chinese). [2] 沈真,杨胜春, 陈普会.复合材料层压板抗冲击性行为及表征方法实验研究[J].复合材料学报,2008,25(5):125-133. SHEN Z,YANG S C,CHEN P H.Experimental study on the behavior and characterization methods of composite laminates to withstand impact[J].Acta Materiae Compositae Sinica,2008,25(5):125-133(in Chinese). [3] GREENHALGH E, BISHOP S M,BRAY D,et al.Characterization of impact damage in skin-stringer composite structures[J].Composite Structures,1996,36(3-4):187-207. [4] 赵秀峰. 复合材料加筋板冲击损伤及损伤容限研究[D].西安:西北工业大学,2007:29-48. ZHAO X F.Damage behavior of the stiffened plates subjected to the low-velocity impact[D].Xi'an:Northwestern Polytechnical University,2007:29-48(in Chinese). [5] 饶辉,许希武, 朱炜垚,等.复合材料加筋板低速冲击损伤的数值模拟[J].复合材料学报,2013,30(4):211-218. RAO H,XU X W,ZHU W Y,et al.Numerical simulation of low velocity impact damage on stiffened composite panels[J].Acta Materiae Compositae Sinica,2013,30(4):211-218(in Chinese). [6] WIGGENRAAD J F M, ZHANG X, DAVIES G A O.Impact damage prediction and failure analysis of heavily loaded,blade-stiffened composite wing panels[J].Composite Structures,1999,45(2):81-103. [7] GREENHALGH E, SINGH S,HUGHES D,et al.Impact damage resistance and tolerance of stringer stiffened composite structures[J].Plastics Rubber and Composites,1999,28(5):228-251. [8] 邵青,何宇廷, 张腾,等.复合材料加筋板低速冲击损伤及剩余强度试验研究[J].复合材料学报,2014,31(1):200-206. SHAO Q,HE Y T,ZHANG T,et al.Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J].Acta Materiae Compositae Sinica,2014,31(1):200-206(in Chinese). [9] SUH S S, HAN N L,YANG J M,et al.Compression behavior of stitched panel with a clearly visible stiffener impact damage[J].Composite Strutures,2003,62(2):213-221. [10] 刘德博,田甜,关志东. 复合材料低速冲击永久凹坑深度预测方法[J].航空制造技术,2011(19):87-90. LIU D B,TIAN T,GUAN Z D.Prediction of permanent indentation depth if laminate subjected to low-velocity impact[J].Aeronautical Manufacturing Technology,2011(19):87-90(in Chinese). [11] SWANSON S R. Contact deformation and stress in orthotropic plates[J].Composites Part A:Applied Science and Manufacturing,2005,36(10):1421-1429. [12] SHI Y, SWAIT T,SOUTIS C.Modelling damage evolution in composite laminates subjected to low velocity impact[J].Composite Structures,2012,94(9):2902-2913. [13] FANTERIA D, LONGO G,PANERTTIERI E.A non-linear shear damage model to reproduce permanent indentation caused by impact in composite laminates[J].Composite Structures,2014,111:111-121. [14] BOUVET C, RIVALLANT S,BARRAU J J.Low velocity impact modeling in composite laminates capturing permanent indentation[J].Composites Science and Technology,2012,72(16):1977-1988. [15] GUAN Z D, HE W,CHEN J,et al.Permanent indentation and damage creation of laminates with different composite systems:An enperimental investigation[J].Polymer Composites,2014,35(5):872-883. [16] HE W,GUAN Z D, LI X.Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure[J].Composite Structures,2013,96:232-242. [17] 关志东,赵伟. FC落锤式冲击试验机的研制及T300/QY8911层合板低速冲击损伤试验研究[J].复合材料学报,2005,22(Suppl.):27-31. GUAN Z D,ZHAO W.FC impact testing machine and the research of low velocity impact damage of T300/QY8911 composite plates[J].Acta Materiae Compositae Sinica,2005,22(Suppl.):27-31(in Chinese). [18] American Society for Testing and Materials Committiee.Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event :ASTM D7136/D7136M-12[S].Philadelphia:ASTM,2012:10. [19] SHOEPPNER G A, ABRATE S.Delamination threshold loads for low velocity impact on composite laminates[J].Composites Part A:Applied Science and Manufacturing,2000,31(9):903-915. [20] AKATAS M, ATAS C,ICTEN B M.An experimental investigation of the impact response of composite laminates[J].Composite Structures,2009,87(4):307-313. [21] TURON A, DÁVILA C G,CAMANHO P P,et al.An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J].Engineering Fracture Mechanics,2007,74(10):1665-1682. [22] FAGGIANI A, FALZON B G.Predicting low-velocity impact damage on a stiffened composite panel[J].Composites Part A:Applied Science and Manufacturing,2010,41(6):737-749.
点击查看大图
计量
- 文章访问数: 873
- HTML全文浏览量: 72
- PDF下载量: 545
- 被引次数: 0