An efficient method for estimating various variance-based sensitivity indices
-
摘要: 为同时计算各类基于方差的灵敏度指标,提出了基于空间分割和无迹变换(UT)的计算方法,其可以重复利用一组样本点近似计算出基于方差的全局灵敏度指标(Sobol指标)、基于方差的区域灵敏度指标以及基于方差的W指标。除此之外,还对基于方差的W指标进行了改进,改进的基于方差的W指标除包含原始指标所提供的信息外,还包含了输入变量取不同实现区间时对输出响应方差影响的变异性,可以更合理地反映调整输入变量的不同取值区间对输出离散程度的平均影响。数值算例以及工程算例的计算结果表明了本文方法在计算上的准确性以及改进的基于方差的W指标的合理性。Abstract: In order to simultaneously estimate various variance-based sensitivity indices, a method is proposed by combining space-partition idea and unscented transformation (UT) method, which can estimate variance-based global sensitivity index (Sobol index), variance-based regional sensitivity index and variance-based W index by repeatedly using a set of UT samples. Besides, a modified variance-based W index is proposed, which can analyze the sensitivity of the model input variables comprehensively and reasonably. What's more, the modified variance-based W index includes both the original one and the variability of effect on the variance of model output when the model input variable is fixed in different intervals. Thus, the modified one more reasonably reflects the average impact on the variance of the model output when model input variable is fixed in different intervals. The results of numerical and engineering examples illustrate the accuracy and efficiency of the proposed method and the reasonability of the modified variance-based W index.
-
[1] SALTELLI A. Sensitivity analysis for importance assessment[J].Risk Analysis,2002,22(3):579-590. [2] SALTELLI A, MARIVOET J.Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering and System Safety,1990,28(2): 229-253. [3] SOBOL I M, KUCHERENKO S.Derivative based global sensitivity measures and their link with global sensitivity indices[J].Mathematics and Computers in Simulation,2009,79(10): 3009-3017. [4] SALTELLI A, ANNONI P,AZZINI I,et al.Variance based sensitivity analysis of model output.Design and estimator for the total sensitivity index[J].Computation Physics Communications,2010,181(2):259-270. [5] BORGONOVO E. A new uncertainty importance measure[J].Reliability Engineering and System Safety,2007,92(6):771-784. [6] BORGONOVO E, CASTAINGS W,TARANTOLA S.Moment independent importance measures:New results and analytical test cases[J].Risk Analysis,2011,31(3):404-428. [7] BOLADO-LAVIN R, CASTAINGS W,TARANTOLA S.Contribution to the sample mean plot for graphical and numerical sensitivity analysis[J].Reliability Engineering and System Safety,2009,94(6):1041-1049. [8] TARANTOLA S, KOPUSTINSKAS V,BOLADO-LAVIN R,et al.Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J].Reliability Engineering and System Safety,2012,99(2):62-73. [9] WEI P F, LU Z Z,RUAN W B,et al.Regional sensitivity analysis using revised mean and variance ratio functions[J].Reliability Engineering and System Safety,2014,121(1):121-135. [10] WEI P F, LU Z Z,SONG J W.A new variance-based global sensitivity analysis technique[J].Computer Physics Communications,2013,184(11):2540-2551. [11] SANSEVERINO C M R, RAMIREZ-MARQUEZ J E.Uncertainty propagation and sensitivity analysis in system reliability assessment via unscented transformation[J].Reliability Engineering and System Safety,2014,132:176-185. [12] MCNAMEE J, STENGER F.Construction of fully symmetric numerical integration formulas[J].Numerische Mathematik,1967,10(4):327-344. [13] ZHAI Q Q, YANG J,ZHAO Y.Space-partition method for the variance-based sensitivity analysis:Optimal partition scheme and comparative study[J].Reliability Engineering and System Safety,2014,131(6):66-82. [14] ARCHER G, SALTELLI A,SOBOL I M.Sensitivity measures ANOVA-like techniques and the use of bootstrap[J].Journal of Statistical Computation and Simulation,1997,58(2):99-120. [15] NOWAK A S, COLLINS K R.Reliability of structures[M].New York:McGraw-Hill,2000:359.
点击查看大图
计量
- 文章访问数: 1093
- HTML全文浏览量: 37
- PDF下载量: 673
- 被引次数: 0