留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高效计算各类基于方差灵敏度指标的方法

员婉莹 吕震宙 牟珊珊

员婉莹, 吕震宙, 牟珊珊等 . 一种高效计算各类基于方差灵敏度指标的方法[J]. 北京航空航天大学学报, 2016, 42(4): 796-805. doi: 10.13700/j.bh.1001-5965.2015.0309
引用本文: 员婉莹, 吕震宙, 牟珊珊等 . 一种高效计算各类基于方差灵敏度指标的方法[J]. 北京航空航天大学学报, 2016, 42(4): 796-805. doi: 10.13700/j.bh.1001-5965.2015.0309
YUN Wanying, LYU Zhenzhou, MU Shanshanet al. An efficient method for estimating various variance-based sensitivity indices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 796-805. doi: 10.13700/j.bh.1001-5965.2015.0309(in Chinese)
Citation: YUN Wanying, LYU Zhenzhou, MU Shanshanet al. An efficient method for estimating various variance-based sensitivity indices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 796-805. doi: 10.13700/j.bh.1001-5965.2015.0309(in Chinese)

一种高效计算各类基于方差灵敏度指标的方法

doi: 10.13700/j.bh.1001-5965.2015.0309
基金项目: 国家自然科学基金(51475370);中央高校基本科研业务费专项资金(3102015BJ(Ⅱ)CG009)
详细信息
    作者简介:

    员婉莹 女,博士研究生。主要研究方向:可靠性工程、灵敏度分析。 E-mail: wanying_yun@163.com;吕震宙 女,博士,教授,博士生导师。主要研究方向:可靠性工程、灵敏度分析、模型确认和多学科优化。 Tel.: 029-88460480 E-mail: zhenzhoulu@nwpu.edu.cn

    通讯作者:

    吕震宙, Tel.: 029-88460480 E-mail: zhenzhoulu@nwpu.edu.cn

  • 中图分类号: TB114.3

An efficient method for estimating various variance-based sensitivity indices

Funds: Natural Science Foundation of China (51475370);the Fundamental Research Funds for the Central Universities (3102015 BJ (II) CG009)
  • 摘要: 为同时计算各类基于方差的灵敏度指标,提出了基于空间分割和无迹变换(UT)的计算方法,其可以重复利用一组样本点近似计算出基于方差的全局灵敏度指标(Sobol指标)、基于方差的区域灵敏度指标以及基于方差的W指标。除此之外,还对基于方差的W指标进行了改进,改进的基于方差的W指标除包含原始指标所提供的信息外,还包含了输入变量取不同实现区间时对输出响应方差影响的变异性,可以更合理地反映调整输入变量的不同取值区间对输出离散程度的平均影响。数值算例以及工程算例的计算结果表明了本文方法在计算上的准确性以及改进的基于方差的W指标的合理性。

     

  • [1] SALTELLI A. Sensitivity analysis for importance assessment[J].Risk Analysis,2002,22(3):579-590.
    [2] SALTELLI A, MARIVOET J.Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering and System Safety,1990,28(2): 229-253.
    [3] SOBOL I M, KUCHERENKO S.Derivative based global sensitivity measures and their link with global sensitivity indices[J].Mathematics and Computers in Simulation,2009,79(10): 3009-3017.
    [4] SALTELLI A, ANNONI P,AZZINI I,et al.Variance based sensitivity analysis of model output.Design and estimator for the total sensitivity index[J].Computation Physics Communications,2010,181(2):259-270.
    [5] BORGONOVO E. A new uncertainty importance measure[J].Reliability Engineering and System Safety,2007,92(6):771-784.
    [6] BORGONOVO E, CASTAINGS W,TARANTOLA S.Moment independent importance measures:New results and analytical test cases[J].Risk Analysis,2011,31(3):404-428.
    [7] BOLADO-LAVIN R, CASTAINGS W,TARANTOLA S.Contribution to the sample mean plot for graphical and numerical sensitivity analysis[J].Reliability Engineering and System Safety,2009,94(6):1041-1049.
    [8] TARANTOLA S, KOPUSTINSKAS V,BOLADO-LAVIN R,et al.Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J].Reliability Engineering and System Safety,2012,99(2):62-73.
    [9] WEI P F, LU Z Z,RUAN W B,et al.Regional sensitivity analysis using revised mean and variance ratio functions[J].Reliability Engineering and System Safety,2014,121(1):121-135.
    [10] WEI P F, LU Z Z,SONG J W.A new variance-based global sensitivity analysis technique[J].Computer Physics Communications,2013,184(11):2540-2551.
    [11] SANSEVERINO C M R, RAMIREZ-MARQUEZ J E.Uncertainty propagation and sensitivity analysis in system reliability assessment via unscented transformation[J].Reliability Engineering and System Safety,2014,132:176-185.
    [12] MCNAMEE J, STENGER F.Construction of fully symmetric numerical integration formulas[J].Numerische Mathematik,1967,10(4):327-344.
    [13] ZHAI Q Q, YANG J,ZHAO Y.Space-partition method for the variance-based sensitivity analysis:Optimal partition scheme and comparative study[J].Reliability Engineering and System Safety,2014,131(6):66-82.
    [14] ARCHER G, SALTELLI A,SOBOL I M.Sensitivity measures ANOVA-like techniques and the use of bootstrap[J].Journal of Statistical Computation and Simulation,1997,58(2):99-120.
    [15] NOWAK A S, COLLINS K R.Reliability of structures[M].New York:McGraw-Hill,2000:359.
  • 加载中
计量
  • 文章访问数:  1093
  • HTML全文浏览量:  37
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-07-04
  • 网络出版日期:  2016-04-20

目录

    /

    返回文章
    返回
    常见问答