Application of multi-axial fatigue life estimation methods to aircraft structural components
-
摘要: 针对飞机结构上常见的处于多轴应力应变(比例多轴)状态下的典型结构,采用3种多轴疲劳寿命分析模型,对该结构的疲劳危险部位进行疲劳寿命分析,并与单轴寿命分析方法的分析结果、疲劳试验结果进行了对比分析。首先对该结构进行细节有限元计算,确定结构的应力分布与应力水平,当载荷施加到88%的最大一级的峰值载荷时,疲劳危险部位的孔边即出现显著的塑性应变,因此,选用低周疲劳(LCF)寿命预测模型进行分析。选取的3种分析模型均是基于临界面的分析模型,分别是Wang-Shang模型、Smith-Watson-Topper(SWT)模型以及Morrow-Brown-Miller模型。为验证分析模型工程适用性,开展了该结构的多轴疲劳试验。与试验结果相比,3种分析模型的预测结果均偏大,其中Wang-Shang模型的预测结果最接近试验值,适用于本文这类结构;SWT模型和Morrow-Brown-Miller模型的预测结果误差相对较大。对于处于多轴载荷状态下的结构,应按照多轴疲劳寿命分析方法进行寿命预测,单轴疲劳寿命分析方法将给出过于危险的评定结果。Abstract: The fatigue life of a typical aircraft structural component, which is subjected to a representative proportional multi-axial stress state, was evaluated using three different multi-axial fatigue life estimation models. Comparisons between the evaluation results obtained by multi-and uni-axial fatigue models and those with the test results were performed. Finite element analysis indicates that plasticity strain is significant on the fatigue critical details when the structure endurance reaches 88% of the peak load, therefore, low-cycle fatigue (LCF) life prediction models are reasonable. Three LCF models based on critical plane theory are selected to estimate the fatigue life of the structure, i.e., Wang-Shang's model, Smith-Watson-Topper(SWT)'s model and Morrow-Brown-Miller's model. Multi-axial fatigue test was also conducted to investigate the validity of the models for engineering application. The comparison results are as follows. The estimatied results of the three multiaxial models are all conservative, in which Wang-Shang's model gives a relatively smaller error and is acceptable for such structures. The errors of SWT's model and Morrow-Brown-Miller's model are much greater. For the fatigue assessment of such structural components subjected to multi-axial loading, multi-axial fatigue life estimation methods must be used since the uni-axial fatigue life method will give too dangerous estimation.
-
Key words:
- fatigue /
- multi-axial fatigue /
- application /
- aircraft structure /
- life estimation
-
[1] WANG C H,BROWN M W.Life prediction techniques for variable amplitude multi-axial fatigue-Part 2:Comparison with experimental results[J].ASME Journal of Engineering Materials and Technology,1996,118(1):371-374. [2] 王雷,王德俊.一种随机多轴疲劳的寿命预测方法[J].机械强度,2003,25(2):204-206. WANG L,WANG D J.Life prediction approach for random multi-axial fatigue[J].Journal of Mechanical Strength,2003,25(2):204-206(in Chinese). [3] 尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007:118-129. SHANG D G,WANG D J.Multi-axial fatigue strength[M].Beijing:Science Press,2007:118-129(in Chinese). [4] DARRELL F S,GARY B M.Multi-axial fatigue[M].Warrendale:SAE Publication Press,2000:79-97. [5] 王英玉.金属材料的多轴疲劳行为与寿命估算[D].南京:南京航空航天大学,2005:4-9. WANG Y Y.Fatigue behavior and fatigue life prediction of metals under multi-axial cyclic loading[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2005:4-9(in Chinese). [6] WANG C H,BROWN M W.Life prediction techniques for variable amplitude multi-axial fatigue-Part1:Theories[J].ASME Journal of Engineering Materials and Technology,1996,118(1):367-370. [7] 时新红,张建宇,鲍蕊,等.材料多轴高低周疲劳失效准则的研究进展[J].机械强度,2008,30(3):515-521. SHI X H,ZHANG J Y,BAO R,et al.Development of failure criterion on high-cycle and low-cycle multiaxial fatigue[J].Journal of Mechanical Strength,2008,30(3):515-521(in Chinese). [8] 张莉,唐立强,付德龙.基于损伤累积理论的多轴疲劳寿命预测方法[J].哈尔滨工业大学学报,2009,41(4):123-125. ZHANG L,TANG L Q,FU D L.An evaluation method of fatigue life under multi-axial loading based on damage accumulation theory[J].Journal of Harbin Institute of Technology,2009,41(4):123-125(in Chinese). [9] 吴志荣,胡绪腾,宋迎东.多轴载荷下缺口件的疲劳寿命估算方法[J].工程力学,2014,31(10):216-221. WU Z R,HU X T,SONG Y D.Estimation method for fatigue life of notched specimen under multi-axial loading[J].Engineering Mechanics,2014,31(10):216-221(in Chinese). [10] 尚德广,姚卫星.基于临界面法的多轴疲劳损伤参量的研究[J].航空学报,1999,20(4):295-298. SHANG D G,YAO W X.Study on multiaxial fatigue damage parameters based on the critical plane approach[J].Acta Aeronautica et Astronautica Sinica,1999,20(4):295-298(in Chinese). [11] 吴志荣,胡绪腾,宋迎东.基于最大剪切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J].机械工程学报,2013,49(2):59-66. WU Z R,HU X T,SONG Y D.Multiaxial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J].Journal of Mechanical Engineering,2013,49(2):59-66(in Chinese). [12] PARK J,NELSON D.Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life[J].International Journal of Fatigue,2000,22(1):23-39. [13] 邱宝象,高增梁,王效贵,等.基于有限元法的16MnR缺口件疲劳寿命预测方法[J].工程力学,2010,27(8):21-26. QIU B X,GAO Z L,WANG X G,et al.A fatigue life prediction method for 16MnR steel notched components based on the finite element method[J].Engineering Mechanics,2010,27(8):21-26(in Chinese). [14] 吴光强,李运超,盛云.后悬架多轴疲劳寿命预测[J].同济大学学报,2010,36(6):881-884. WU G Q,LI Y C,SHENG Y.Multiaxial fatigue life prediction of rear suspension[J].Journal of Tongji University,2010,36(6):881-884(in Chinese). [15] 张成成.复杂应力场下结构高周疲劳寿命分析[D].南京:南京航空航天大学,2010:60-71. ZHANG C C.Fatigue life prediction of structures in HCF region under complex stress field[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:60-71(in Chinese).
点击查看大图
计量
- 文章访问数: 1060
- HTML全文浏览量: 64
- PDF下载量: 830
- 被引次数: 0