Test and characterization model on fatigue behavior for pre-corroded metallic aircraft materials
-
摘要: 提出了预腐蚀金属材料疲劳性能表征S-N-t曲面模型,并建立了模型参数估计算法。采用成组法和升降法,试验测定了预腐蚀后的3种航空材料(LD2CS、LD10CS和15CrMnMoVA)有擦蚀和无擦蚀疲劳S-N-t曲面,采用新建立的S-N-t曲面模型处理试验数据,发现模型曲面与试验数据吻合良好;预腐蚀材料的无擦蚀和有擦蚀疲劳性能随着预腐蚀时间的增加而下降,相同的应力水平和预腐蚀时间下,预腐蚀材料的无擦蚀疲劳性能更好。Abstract: New S-N-t surface model was proposed for characterizing fatigue behavior of pre-corroded metallic materials and novel formulae were derived to estimate the parameters of the proposed model. Fatigue life-group and up-down tests were conducted on un-notched and notched pre-corroded specimens for three different types of metallic aircraft materials (LD2CS, LD10CS and 15CrMnMoVA)to determine the fatigue S-N-t surface. Good agreements were achieved between the test and the new S-N-t surface models by applying the new proposed S-N-t surface model to the test data points. Fatigue behavior of un-notched and notched pre-corroded metallic aircraft materials decreases with the increase of pre-corrosion time. The un-notched specimens show better fatigue behavior than notched ones at the same stress level and pre-corrosion time.
-
Key words:
- pre-corrosion /
- fatigue /
- S-N-t surface model /
- notched /
- un-notched
-
[1] BRAY G H,BUCCI R J,COLVIN E L,et al.Effect of prior corrosion on the S/N fatigue performance of aluminum sheet alloys 2024-T3 and 2524-T3[C]//Effect of the Environment on the Initiation of Crack Growth.West Conshohocken,PA:ASTM Special Technical Publication,1997:89-103. [2] MAY M E,LUC T P,SAINTIER N,et al.Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J].International Journal of Fatigue,2013,47:330-339. [3] KERMANIDIS A T,PETROYIANNIS P V,PANTELAKIS S G.Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy[J].Theory and Applied Fracture Mechanics,2005,43(1):121-132. [4] WANG S Q,ZHANG D K,CHEN K,et al.Corrosion fatigue behaviors of steel wires used in coalmine[J].Materials and Design,2014,53:58-64. [5] 刘文珽,李玉海.飞机结构日历寿命体系评定技术[M].北京:航空工业出版社,2004:123-137. LIU W T,LI Y H.Assessment on calendar life of aircraft structures[M].Beijing:Aviation Industry Press,2004:123-137(in Chinese). [6] 余建航,郝文尧,房琳.腐蚀环境对直升机材料的力学性能影响分析[J].科技信息,2012,15:243-245. YU J H,HAO W Y,FANG L.Influence of corrosion environment on mechanical properties of helicopter material[J].Science and Technology Information,2012,15:243-245(in Chinese). [7] SADELER R.Influence of contact pressure on fretting fatigue behaviour of AA 2014 alloy with dissimilar mating material[J].Fatigue and Fracture of Engineering Materials and Structures,2006,29(12):1039-1044. [8] JIN O,MALL S.Effects of independent pad displacement on fretting fatigue behavior of Ti-6Al-4V[J].Wear,2002,253(5-6):585-596. [9] 李杰,陆永浩.位移幅值对Inconel600合金微动磨损性能和机制的影响[J].北京科技大学学报,2014,36(10):1328-1334. LI J,LU Y H.Displacement amplitude effects on the fretting wear behavior and mechanism of Inconel600 alloys[J].Journal of University of Science and Technology Beijing,2014,36(10):1328-1334(in Chinese). [10] 刘大伟,彭金方,田来,等.30CrNiMo8合金钢的弯曲微动疲劳特性[J].机械工程材料,2014,38(8):48-52. LIU D W,PENG J F,TIAN L,et al.Bending fretting fatigue characteristics of 30CrNiMo8 alloy steel[J].Material For Mechanical Engineering,2014,38(8):48-52(in Chinese). [11] CORTEZ R,MALL S,CALCATERRA J R.Investigation of variable amplitude loading on fretting fatigue behavior of Ti-6Al-V[J].International Journal of Fatigue,1999,21(7):709-717. [12] KUBOTA M,TANAKA Y,KONDO Y.The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines[J].Tribology International,2009,42(9):1352-1359. [13] 徐丽,陈跃良,张勇,等.不同预腐蚀时间下微动对搭接件疲劳寿命影响研究[J].南京航空航天大学学报,2014,46(3):403-407. XU L,CHEN Y L,ZHANG Y,et al.Study of fretting effects on fatigue life of lap joints at different pre-corrosive time[J].Journal of Nanjing University of Aeronautics and Astronautics,2014,46(3):403-407(in Chinese). [14] 高广睿,张晓化,刘道新.Ti811合金的高温微动疲劳行为研究[J].中国有色金属学报,2005,15(1):38-43. GAO G R,ZHANG X H,LIU D X.Fretting behaviors of Ti811 alloy at elevated temperature[J].The Chinese Journal of Nonferrous Metals,2005,15(1):38-43(in Chinese). [15] 杨洋,何国球,卢棋,等.轮轴钢35CrMoA单轴微动疲劳失效机理[J].金属功能材料,2015,22(1):21-26. YANG Y,HE G Q,LU Q,et al.Uniaxial fretting fatigue properties of 35CrMoA[J].Metallic Functional Materials,2015,22(1):21-26. [16] ANTONIOU R A,RADTKE T C.Mechanisms of fretting-fatigue of titanium alloys[J].Materials Science and Engineering A,1997,237(2):229-240. [17] 高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2001:133-139. GAO Z T,XIONG J J.Fatigue reliability[M].Beijing:Beihang University Press,2001:133-139(in Chinese). [18] 穆志韬,曾本银.直升机结构疲劳[M].北京:国防工业出版社,2010:365-390. MU Z T,ZENG B Y.Fatigue of helicopter structures[M].Beijing:National Defense Industry Press,2010:365-390(in Chinese). [19] GOODMAN J.Mechanics applied to engineering[M].9th ed.New York:Longmans,Green & Co.,1954:268-298. [20] American Society for Testing Materials International.Standard test method for exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminum alloys:ASTM G34-01[S].West Conshohocken,PA:American Society for Testing and Materials International,2007:2-7. [21] American Society for Testing Materials International.Standard practice for presentation of constant amplitude fatigue test results for metallic materials:ASTM E468-90[S].West Conshohocken,PA:American Society for Testing and Materials International,2004:1-5.
点击查看大图
计量
- 文章访问数: 992
- HTML全文浏览量: 44
- PDF下载量: 818
- 被引次数: 0