Aeroengine sensor data reconstruction with missing data
-
摘要: 为处理传感器数据缺失问题,利用子空间表示系统演化特征,提出了基于极化增量矩阵填充(PIMC)的航空发动机传感器数据的在线重构模型。该模型通过历史数据获得当前的数据特征表示,并用新增的数据不断更新子空间以跟踪并表示数据发展特征。将本文模型用于仿真数据进行验证,重构结果和无噪数据的归一化均方误差(MSE)均小于1×10-5,实验结果显示本文模型对于航空发动机传感器数据重构有很好的应用价值,对缺失数据和噪声是鲁棒的。
-
关键词:
- 航空发动机 /
- 信息缺失 /
- 传感器数据重构 /
- 子空间 /
- 极化增量矩阵填充(PIMC)
Abstract: Aiming at handling incomplete sensor data, we propose an online-reconstruction model based on the polar incremental matrix completion (PIMC) algorithm for aeroengine sensor data, which can represent the evolving features of system by subspace. The model extracts the current data feature from the history data and updates the subspace to track the evolving features via new data. The proposed model was validated and compared on two simulated datasets and the normalized mean square errors (MSE) between the reconstruction by PIMC and the ground truth are all less than 1×10-5. The experimental results show that the proposed model is practical for aeroengine sensor data reconstruction, which is robust to missing data and noise. -
[1] 唐雅娟.发动机试验传感器数据证实的软计算方法与系统实现研究[D].长沙:国防科学技术大学,2007:1. TANG Y J.Study on methods and system realization of sensor data validation by soft computing technique for engine test[D].Changsha:National University of Defense Technology,2007:1(in Chinese). [2] 黄向华,孙建国.基于自联想网络的发动机传感器解析余度技术[J].航空动力学报,1999,14(4):433-436. HUANG X H,SUN J G.Analytical redundancy based on autoassociative neural network for aeroengine sensors[J].Journal of Aerospace Power,1999,14(4):433-436(in Chinese). [3] 单晓明,宋云峰,黄金泉,等.基于神经网络和模糊逻辑的航空发动机状态监视[J].航空动力学报,2009,24(10):2356-2361. SHAN X M,SONG Y F,HUANG J Q,et al.Condition monitoring of aero-engine based on neural network and fuzzy logic[J].Journal of Aerospace Power,2009,24(10):2356-2361(in Chinese). [4] 仇小杰,黄金泉,鲁峰,等.基于云关联度的航空发动机传感器、部件故障识别系统设计[J].航空动力学报,2012,26(11):2584-2592. QIU X J,HUANG J Q,LU F,et.al.Fault diagnosis system design for the sensors and components of aircraft engine based on cloud relational analysis[J].Journal of Aerospace Power,2012,26(11):2584-2592(in Chinese). [5] 任淑红.民航发动机性能可靠性评估与在翼寿命预测方法研究[D].南京:南京航空航天大学,2010:19-20. RENG S H.Research on methods of performance reliability assessments and life on wing prediction for civil aeroengine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:19-20(in Chinese). [6] MOULINES E,DUHAMEL P,CARDOSO J F,et al.Subspace methods for the blind identification of multichannel FIR filters[J].IEEE Transactions on Signal Processing,1995,43(2):516-525. [7] KRIM H,VIBERG M.Two decades of array signal processing research:The parametric approach[J].IEEE Signal Processing Magazine,1996,13(4):67-94. [8] AUDETTE M A,FERRIE F P,PETERS T M.An algorithmic overview of surface registration techniques for medical imaging[J].Medical Image Analysis,2000,4(3):201-217. [9] 栗茂林,梁霖,王孙安.基于稀疏表示的故障敏感特征提取方法[J].机械工程学报,2013,49(1):73-80. LI M L,LIANG L,WANG S A.Sensitive feature extraction of machine faults bsed on sparse representation[J].Journal of Mechanical Engineering,2013,49(1):73-80(in Chinese). [10] 耿宏,李萍萍,刘家学,等.基于压缩感知的QAR数据重构[J].计算机测量与控制,2013,21(5):1351-1353. GENG H,LI P P,LIU J X,et.al.QAR data sapling and reconstructruction based on compressive sensing[J].Computer Measurement and Control,2013,21(5):1351-1353(in Chinese). [11] NEEDELL D,TROPP J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26(3):301-321. [12] HE J,BALZANO L,LUI J.Online robust subspace tracking from partial information[J].Mathmatics,2011:arXiv:1109.3827. [13] KENNEDY R,TAYLOR C J,BALZANO L.Online Completion of Ⅲ-conditioned low-rank matrices[C]//IEEE Global Conference on Signal and Information Processing (GlobalSIP).Piscataway,NJ:IEEE Press,2014:507-511. [14] MATHIOUDAKIS K,KAMBOUKOS P,STAMATIS A.Gas turbine component fault detection from a limited number of measurements[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2004,218(8):609-618. [15] BALZANO L,NOWAK R,RECHT B.Online identification and tracking of subspaces from highly incomplete information[C]//201048th Annual Allerton Conference on Communication,Control,and Computing (Allerton).Piscataway,NJ:IEEE Press,2010:704-711. [16] BRAND M.Incremental singular value decomposition of uncertain data with missing values[M]//Computer Vision-ECCV 2002.Berlin:Springer,2002:707-720. [17] BUNCH J R,NIELSEN C P.Updating the singular value decomposition[J].Numerische Mathematik,1978,31(2):111-129.
点击查看大图
计量
- 文章访问数: 999
- HTML全文浏览量: 114
- PDF下载量: 581
- 被引次数: 0