Finite thrust spacecraft approaching trajectory planning based on genetic programming
-
摘要: 通过引入基函数的概念,提出了采用遗传编程求解有限推力航天器逼近非合作目标最终逼近段轨迹规划问题的方法。该方法将推力器开关状态定义为基函数,以多个基函数分别乘以开关状态持续时间再求和作为推力器开关的历程函数;将历程函数转换为遗传编程的树型结构,将消耗燃料的质量作为适应度函数,并将规避障碍物和终端逼近精度等约束条件以罚函数的形式添加到适应度函数中;利用遗传编程的模拟自然进化理论的全局寻优机制求解,最终得到最优逼近轨迹方案。某航天器在有限推力下逼近非合作目标的轨迹规划结果表明:整个逼近过程推力器仅开关5次,大大降低了对开关频率的要求,同时,规划结果比采用高斯伪谱法时逼近时间降低了30.09%,燃料消耗降低了4.18%。Abstract: Based on the genetic programming algorithm with the introduction of the basis function, this paper proposes a new way to deal with finite-thrust spacecraft trajectory optimization when approaching a non-cooperative object in the final approach phase. Thruster switch state is defined as the basis functions which respectively multiply by the switch state duration and then sum as the thruster state function. The thruster state function is converted into genetic programming tree structure. Fuel consumption is defined as the fitness function of genetic programming, and the constraint conditions of obstacle avoidance and approaching precision are induced into the fitness function in the form of penalty function. Genetic programming algorithm is used to obtain the optimal-fuel trajectory planning scheme by training all the possible combinations of thrusters switch state. The result is global optimal, and the thrusters switch frequency is not high. The trajectory planning result based on finite thrust of a spacecraft approaching non-cooperative object shows that the thruster is only opened and closed 5 times, greatly reducing the requirement for switching frequency. Approaching time is reduced by 30.09% compared with the Gauss pseudospectral method, and fuel consumption is reduced by 4.18%.
-
Key words:
- trajectory planning /
- finite thrust /
- non-cooperative object /
- genetic programming /
- spacecraft
-
[1] STAMM S,MOTAQHEDI P.Orbital express capture system:Concept to reality[C]//Proceedings of the Society of Photo-optical Instrumentation Engineers. Bellingham:SPIE,2004,5419:78-91. [2] ODA M.Space robot technology experiments on NASDA's ETS-VII satellite[J]. Advanced Robotics the International Journal of the Robotics Society of Japan,1998,13(1):335-336. [3] LANDZETTEL K,PREUSCHE C,ALBU-SCHAFFER A,et al.Robotic on-orbit servicing-DLR's experience and perspective[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2006:4587-4594. [4] 郭继峰,张立佳,崔乃刚.空间非合作目标燃料最优终端接近策略研究[J].宇航学报,2010,31(2):386-390.GUO J F,ZHANG L J,CUI N G.Optimal control for space capture of noncooperative target[J].Journal of Astronautics,2010,31(2):386-390(in Chinese). [5] 朱仁璋,林彦.航天器交会最终逼近段相对姿态估计与控制[J].北京航空航天大学学报, 2007, 33(5):544-548.ZHU R Z,LIN Y.Relative attitude estimation and control schemes for the final approach phase of spacecraft rendezvous[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(5):544-548(in Chinese). [6] 卢山, 徐世杰.非合作目标的自主接近控制律研究[J].中国空间科学技术,2008(5):7-12.LU S,XU S J.Control laws for autonomous proximity with non-cooperative target[J].Chinese Space Science and Technology,2008(5):7-12(in Chinese). [7] PHILLIP J M,KAVRAKI L E,BEDROSSIAN N.Spacecraft rendezvous and docking with real-time randomized optimization:AIAA-2003-5511[R].Reston:AIAA,2003. [8] BOYARKO G,YAKIMENKO O,ROMANO M.Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object[J].Journal of Guidance,Control,and Dynamics,2011,34(4):1239-1252. [9] 雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406.YONG E M,CHEN L,TANG G J.A survey of numerical methods for trajectory optimization of spacecraft[J].Journal of Astronautics, 2008,29(2):397-406(in Chinese). [10] HUANG G Q,LU Y P,NAN Y.A survey of numerical algorithms for trajectory optimization of flight vehicles[J].Science China Technological Sciences,2012,55(9):2538-2560. [11] 彭坤,果琳丽,向开恒,等.基于混合法的月球软着陆轨迹优化[J].北京航空航天大学学报,2014,40(7):910-915.PENG K,GUO L L,XIANG K H, et al.Optimization of lunar soft landing trajectory based on hybrid method[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(7):910-915(in Chinese). [12] 邵龙飞,师鹏,赵育善.电磁航天器编队动力学建模与运动规划方法[J].北京航空航天大学学报,2015,41(4):737-743.SHAO L F,SHI P,ZHAO Y S. Dynamics modeling and motion programming for electromagnetic formation flight[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(4):737-743(in Chinese). [13] 段传辉,董云峰.利用高斯伪谱法求解小推力伴星最优释放轨迹[J].中国空间科学技术,2011(5):18-24. DUAN C H,DONG Y F.Optimal control spacecraft fly-around releasing using continuous thruss based on Gauss pseudospectral method[J].Chinese Space Science and Technology,2011(5):18-24(in Chinese). [14] 冯消冰,黄海,王伟.基于遗传算法的大型风机复合材料叶片根部强度优化设计[J].复合材料学报,2012,29(5):196-202.FENG X B, HUANG H,WANG W.Strength optimization of large wind turbine blade root on the genetic algorithm[J].Acta Materiae Compositae Sinica,2012,29(5):196-202(in Chinese). [15] GANDOMI A H, YUN G J. Coupled SelfSim and genetic programming for non-linear material constitutive modeling[J].Inverse Problems in Science and Engineering,2015,23(7):1101-1119. [16] WEMER J C,KALGANOVA T.Disease modeling using evolved discriminate function[C]//Proceedings 6th European Conference on Genetic Progrmming.Berlin:Springer,2003,2610:465-474. [17] KISHORE J K,PATNAIK L M,MANI V,et al.Application of genetic programming for multi-category pattern classification[J].IEEE Transactions on Evolutionary Computation,2000,4(3):242-258. [18] 钟山,董云峰.基于机器学习的卫星姿态控制律设计[J].航天控制,2011,29(4):61-65. ZHONG S,DONG Y F.The design of satellite attitude control law based on machine learning[J].Aerospace Control, 2011,29(4):61-65(in Chinese). [19] 白焰,蒋毅恒,朱耀春,等.基于遗传编程的火电厂主汽温系统建模研究[J].系统仿真学报,2008,20(4):1076-1079.BAI Y,JIANG Y H,ZHU Y C,et al.Modeling main steam temperature system of power plant using genetic programming[J].Journal of System Simulation,2008,20(4):1076-1079(in Chinese). [20] 李良敏,屈梁生.遗传编程在无量纲指标构建中的应用[J].西安交通大学学报,2002,36(7):736-739.LI L M,QU L S.Genetic programming for dimensionless parameters construction[J].Journal of Xi'an Jiaotong University,2002,36(7):736-739(in Chinese). [21] 郭清晨.常值推力姿态控制方法研究[D].哈尔滨:哈尔滨工业大学, 2006:8-19.GUO Q C.Research of constant thrust attitude control method[D].Harbin:Harbin Institute of Technology,2006:8-19(in Chinese).
点击查看大图
计量
- 文章访问数: 914
- HTML全文浏览量: 60
- PDF下载量: 585
- 被引次数: 0