Performance analysis of circuit fault self-repair strategy based on EHW and RBT
-
摘要: 在诸如深空、深海等特殊环境中的电子电路,传统的基于冗余容错技术提高电子系统可靠性的方法受到了很大程度的限制,进而基于硬件演化(EHW)的故障自修复策略开始被广泛研究。但是后者也存在一些弊端,如存在电路演化规模大、电路演化速度慢、故障修复能力有限等问题。因此,在前期工作中,提出了基于EHW和补偿平衡技术(RBT)的电路故障自修复策略。通过从故障自修复能力、故障修复速度、硬件资源消耗等角度对比分析,相比于常规的基于EHW的故障自修复策略,基于EHW和RBT的电路故障自修复策略的故障修复方法灵活、故障修复类型多,且能缩减电路演化规模、缩短电路演化时间、提高电路修复速度、硬件资源消耗可控,其可行性和有效性得到了论证,具有重要的工程应用价值。
-
关键词:
- 硬件演化(EHW) /
- 故障自修复 /
- 补偿平衡技术(RBT) /
- 矫正电路(RTC) /
- 故障在线修复
Abstract: The method of improving the reliability of the electronic systems based on redundant fault-tolerant technology is limited in aerospace, deep sea and some specific fields. Then the fault self-repair strategy based on evolvable hardware (EHW) begins to be researched. However, there are some kinds of disadvantages, such as large evolvable circuit scales, slow evolvable speed, finite ability of fault self-repair and so on, for which a novel fault self-repair strategy based on EHW and reparation balance technology (RBT) had been proposed in previous research. The contrast analysis is carried out in three aspects, which are the ability of fault self-repair, the speed of fault self-repair and the consumption of hardware resource. Compared to the conventional fault self-repair strategy based on EHW, the fault self-repair strategy based on EHW and RBT, which has flexible methods of troubleshooting, repairs many fault types, reduces the scales of evolvable circuit, decreases the evolvable time, and increases the speed of evolvable circuit. The consumption of hardware resource can be controlled. Its feasibility and validity have been demonstrated. The proposed fault self-repair strategy has important engineering application significance. -
[1] JESSICA D,ROGER D,ROGER M G,et al.Multi-agent control of high redundancy actuation[J].International Journal of Automation and Computing,2014,11(1):1-9. [2] NORDSTROM S G,SHETTY S S,NEEMA S K,et al.Modeling reflex-healing autonomy for large-scale embedded systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2006,36(3):292-303. [3] EBRAHIMI M,MIREMADI S G,ASADI H,et al.Low-cost scan-chain-based technique to recover multiple errors in TMR systems[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2013,21(8):1454-1468. [4] ALMUKHAIZIM S,SINANOGLU O.Novel hazard-free majority voter for n-modular redundancy-based fault tolerance in asynchronous circuits[J].IET Computers & Digital Techniques,2011,5(4):306-315. [5] 姜昱光,韩建伟,朱翔,等.SRAM 型FPGA 单粒子翻转效应加固方法[J].北京航空航天大学学报,2014,40(8):1073-1077.JIANG Y G,HAN J W,ZHU X,et al.Single event upset mitigation testing of SRAM-based FPGAs[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(8):1073-1077(in Chinese). [6] 赵磊,王祖林,周丽娜,等.星载SRAM型FPGA可靠性快速评估技术[J].北京航空航天大学学报,2013,39(7):863-868.ZHAO L,WANG Z L,ZHOU L N,et al.Fast reliability evaluation for SRAM-based space borne FPGAs[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(7):863-868(in Chinese). [7] PENG J J,LIU Y P,CHEN Y Y.A dependability model for TMR system[J].International Journal of Automation & Computing,2012,9(3):315-324. [8] ZHANG J B,CAI J Y,MENG Y F,et al.The fault self-repair strategy based on evolvable hardware and reparation balance technology[J].Chinese Journal of Aeronautics,2014,27(5):1211-1222. [9] YAO X,TETSUYA H.Promises and challenges of evolvable hardware[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,1999,29(1):87-97. [10] VASSILEV V K,MILLER J F.Scalability problems of digital circuit evolution:Evolvability and efficient designs[C]//The 2nd NASA/DoD Workshop on Evolvable Hardware.Piscataway,NJ:IEEE Press,2000:55-64. [11] LIANG H J,LUO W J,WANG X F.A three-step decomposition method for the evolutionary design of sequential logic circuits[J].Genetic Programming and Evolvable Machines,2009,10(3):231-262. [12] 何国良,李元香,史忠植.基于精英池演化算法的数字电路在片演化方法[J].计算机学报,2010,33(2):365-372.HE G L,LI Y X,SHI Z Z.Elitist pool evolutionary algorithm for on-line evolution of digital circuits[J].Chinese Journal of Computers,2010,33(2):365-372(in Chinese). [13] VASICEK Z,SEKANINA L.Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware[J].Genetic Programming and Evolvable Machines,2011,12(3):305-327. [14] WANG J,CHEN Q S,LEE C.Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware[J].IET Computers & Digital Techniques,2008,22(5):386-400. [15] LOHN J D,HORNBY G S,LINDEN D S.Evolutionary antenna design for a NASA spacecraft[M]//Genetic Programming Theory and Practice Ⅱ.Berlin:Springer,2004:301-315. [16] GREGORY S H,JASON D L,DEREK S L.Computer-automated evolution of an X-band antenna for NASA's space technology 5 mission[J].Evolutionary Computation,2011,19(1):1-23. [17] PAULINE C H,ANDY M T.Challenges of evolvable hardware:Past,present and the path to a promising future[J].Genetic Programming and Evolvable Machines,2011,12(3):183-215. [18] CHANG P C,WANG Y W,TSAI C Y.Evolving neural network for printed circuit board sales forecasting[J].Expert Systems with Applications,2005,29(1):83-92. [19] JAMES M H.Fault-tolerant sensor systems using evolvable hardware[J].IEEE Transactions on Instrumentation and Measurement,2006,55(3):846-853. [20] 朱继祥,李元香,邢建国.可重构系统的演化修复机制[J].计算机学报,2014,37(7):1599-1606.ZHU J X,LI Y X,XING J G.The evolvable recovery of reconfigurable system[J].Chinese Journal of Computers,2014,37(7):1599-1606(in Chinese). [21] 朱继祥,李元香,夏学文.演化硬件的容错模式研究[J].小型微型计算机系统,2010,31(12):2472-2475.ZHU J X,LI Y X,XIA X W.Research on fault tolerance of evolvable hardware[J].Journal of Chinese Computer Systems,2010,31(12):2472-2475(in Chinese). [22] 姚睿,王友仁,于盛林,等.具有在线修复能力的强容错三模冗余系统设计及实验研究[J].电子学报,2010,38(1):177-183.YAO R,WANG Y R,YU S L,et al.Design and experiments of enhanced fault-tolerant triple-module redundancy systems capable of online self-repairing[J].Acta Electronica Sinica,2010,38(1):177-183(in Chinese). [23] YAO R,CHEN Q Q,LI Z W,et al.Multi-objective evolutionary design of selective triple modular redundancy systems against SEUs[J].Chinese Journal of Aeronautics,2015,28(3):804-813. [24] 姚睿,于盛林,王友仁,等.采用主流FPGA 的数字电路在线生长进化方法[J].南京航空航天大学学报,2007,39(5):582-587.YAO R,YU S L,WANG Y R,et al.Online growing evolution and evaluation approach based on mainstream FPGA[J].Journal of Nanjing University of Aeronautics and Astronautics,2007,39(5):582-587(in Chinese). [25] 张强,周军,于晓洲.一种可局部动态实时重构的演化硬件平台[J].西北工业大学学报,2011,29(5):761-765.ZHANG Q,ZHOU J,YU X Z.An efficient high-speed real-time partially reconfigurable platform for evolvable hardware[J].Journal of Northwestern Polytechnic University,2011,29(5):761-765(in Chinese). [26] 李本俊,刘丽华,辛德禄.CMOS集成电路原理与设计[M].北京:北京邮电大学出版社,1997:88-94.LI B J,LIU L H,XIN D L.CMOS integrated circuit theory and design[M].Beijing:Beijing University of Posts and Telecommunications Press,1997:88-94(in Chinese). [27] 赵巍.数字电子技术[M].北京:北京邮电大学出版社,2010:81-93.ZHAO W.Digital electronic technology[M].Beijing:Beijing University of Posts and Telecommunications Press,2010:81-93(in Chinese). [28] REV C.High voltage,latch-up proof,4-/8-channel multiplexers data sheet adg5208/adg5209[R].Norword MA:Analog Devices Inc.,2011:1. [29] 李春雨,张丽霞.利用CPLD 提高FPGA 加载速度[J].电子器件,2013,36(4):550-553.LI C Y,ZHANG L X.Using CPLD improve FPGA loading speed[J].Chinese Journal of Electron Devices,2013,36(4):550-553(in Chinese). [30] LI X D,YAO X.Cooperatively coevolving particle swarms for large scale optimization[J].IEEE Transactions on Evolutionary Computation,2012,16(2):210-224. [31] ASAFUDDOULA M,RAY T,SARKER R.A decomposition-based evolutionary algorithm for many objective optimization[J].IEEE Transactions on Evolutionary Computation,2015,19(3):445-160. [32] 姚睿,陈芹芹,孙艳梅,等.采用输入输出分解的分区分段演化机制[J].哈尔滨工程大学学报,2015,36(4):522-527.YAO R,CHEN Q Q,SUN Y M,et al.In-partition in-stage evolutionary mechanism by applying input and output decomposition[J].Journal of Harbin Engineering University,2015,36(4):522-527(in Chinese). [33] 宋吉江,牛轶霞,于春战,等.CMOS模拟开关及其选择问题[J].微电子技术,2011,29(3):58-60.SONG J J,NIU Y X,YU C Z,et al.CMOS analog switch and its choices[J].Microelectronic Technology,2011,29(3):58-60(in Chinese). [34] 王迎栋,孙明杰.基于CMOS模拟开关实现平衡混频器[J].计算机与网络,2012(15):70-72.WANG Y D,SUN M J.Design of balanced mixer based on CMOS analog switch[J].Computer & Network,2012(15):70-72(in Chinese). [35] Xilinx Inc..Application note:Gate account capacity metrics for FPGAs XAPP 059(Version 1.1)[R].San Jose:Xilinx Inc.,1997:1-2. [36] Xilinx Inc..Product specification:Spartan-3 FPGA family data sheet(v4.1)[R].San Jose:Xilinx Inc.,2013:1-2. [37] Xilinx Inc..Ultrascale+FPGAs product tables and product selection guide[R].San Jose:Xilinx Inc.,2013:2-3. [38] Xilinx Inc..Spartan-3 generation FPGAs[R].San Jose:Xilinx Inc.,2008:8. [39] 杨之廉,许军.集成电路导论[M].3版.北京:清华大学出版社,2012:123-127,141.YANG Z L,XU J.Integrate circuit introduction[M].3rd ed.Beijing:Tsinghua University Press,2012:123-127,141(in Chinese).
点击查看大图
计量
- 文章访问数: 906
- HTML全文浏览量: 101
- PDF下载量: 549
- 被引次数: 0