Analysis on influence of rotor/empennage aerodynamic interaction on helicopter trim characteristic
-
摘要: 旋翼/平尾气动干扰建模是直升机全机配平模型和飞行动力学模型的核心内容。常规全机配平模型主要通过旋翼下洗流或诱导速度等方式间接考虑旋翼对平尾的气动干扰作用,但未充分考虑旋翼对平尾非定常气动干扰产生的非线性气动载荷,因而仍难于准确体现旋翼/平尾气动干扰对全机配平特性的影响。为此本文基于非定常面元/黏性涡粒子法,通过在平尾面元中增加由旋翼和平尾尾迹时变干扰产生的非定常压力项,建立旋翼/平尾气动干扰模型,直接计算平尾非线性气动载荷,并耦合基于GA/LM混合优化的直升机全机配平方法,构建旋翼/平尾气动干扰作用下的直升机全机配平特性分析方法。通过计算UH-60A直升机的旋翼操纵量和机体姿态,并与试验测试值对比验证本文方法的准确性。通过与基于诱导速度考虑旋翼/平尾气动干扰的直升机配平结果比较表明,后者难于体现直升机低速纵向操纵量和机体俯仰角突增现象,而本文方法能较好地体现直升机低速纵向操纵量和机体俯仰角突增,且与OH-6A、EH-101等试验测量的特性一致。研究不同平尾构型对旋翼/平尾气动干扰下直升机全机配平特性的影响,分析表明低平尾产生较大的低速纵向操纵量突增,而高平尾则增加高速纵向操纵量;前置平尾产生较大的低速纵向操纵量突增,右旋直升机的右置平尾有利于减小低速纵向操纵量突增和机体俯仰角。Abstract: Unsteady aerodynamic interaction of rotor and empennage is the core content of helicopter trim model and flight dynamic model. The rotor/empennage aerodynamic interaction effect was considered indirectly through rotor inflow or induced velocity of rotor wake in classical trim method. However, the nonlinear airload induced by the unsteady aerodynamic interaction was not fully taken into account, and it is then difficult to reflect the influence of the rotor/empennage aerodynamic interaction on the trim characteristic. Therefore, based on unsteady panel/viscous vortex particle method, a rotor/empennage unsteady aerodynamic interactional model is established by adding an unsteady pressure term into empennage panel which is induced by unsteady interaction of rotor and empennage wake, and the nonlinear airload on empennage is simulated. The helicopter trim characteristic analysis method under rotor/empennage aerodynamic interaction is then established by coupling with helicopter trim method based on GA/LM hybrid optimization. The control of rotor and attitude of fuselage of UH-60A are simulated and compared with the flight test data to validate the present method. Compared with the result of the classic helicopter trim method in which rotor/empennage aerodynamic interaction is indirectly accounted through induced velocity, it is shown that the increase of longitudinal control and fuselage attitude is not simulated by the classic helicopter trim method; however, the phenomenon is captured by the present method, and is consistent with the tested characteristics of OH-6A, EH-101, etc. The influence of empennage's type on helicopter trim characteristic is then analyzed, and it is shown that the increase of rotor longitudinal control is great with low-set empennage, forward-set empennage in low-speed forward flight, and high-set empennage in high-speed forward flight. Start-set empennage for right revel rotor is useful to decrease the increasement of longitudinal control and fuselage attitude in low-speed forward.
-
[1] LEISHMAN J G.Principles of helicopter aerodynamics[M].2nd ed.New York:Cambridge University Press,2006:658-682. [2] LEONI R D.Black hawk:The story of a world class helicopter[M].Reston:AIAA,2007:88-102. [3] PROUTY R W,AMER K B.The YAH-64 empennage and tail rotor-a technical history[C]//38th American Helicopter Society Annual Forum.Fairfax,VA:AHS,1982:247-261. [4] MAIN B J,MUSSI F.EH101-development status report[C]//Proceedings of the 16th European Rotorcraft Forum.Glasgow:ERF,1990:Ⅲ.2.1.1-12. [5] EGLIN P.Aerodynamic design of the NH90 helicopter stabilizer[C]//Proceedings of the 23rd European Rotorcraft Forum.Glasgow:ERF,1997:68.1-68.10. [6] 朱宇,张宏林,刘莉.直升机低速飞行特性试验分析[J].航空工程进展,2012,3(4):433-437.ZHU Y,ZHANG H L,LIU L.Flight test research on helicopter low speed flight characteristics[J].Advances in Aeronautical Science and Engineering,2012,3(4):433-437(in Chinese). [7] TALBOT P D,TINLING B E,DECKER W A,et al.A mathematical model of a single main rotor helicopter for piloted simulation:NASA TM-84281[R].Moffett Field:NASA,1982. [8] HE C,LEWIS W D.A parametric study of real time mathematical modeling incorporating dynamic wake and elastic blades[C]//Proceedings of the 48th Annual Forum of the American Helicopter Society.Fairfax,VA:AHS,1992:1181-1196. [9] 陈仁良.直升机飞行动力学数学建模及机动性研究[D].南京:南京航空航天大学,1998:25-56.CHEN R L.Helicopter flight dynamics mathematical modeling and maneuvering research[D].Nanjing:Nanjing University of Aeronautics and Astronautics,1998:25-56(in Chinese). [10] 曹义华.直升机机动飞行旋翼的气动力模拟[J].航空学报,1999,20(1):39-42.CAO Y H.Modeling the aerodynamic force of a maneuvering helicopter rotor[J].Acta Aeronautica et Astronautica Sinica,1999,20(1):39-42(in Chinese). [11] THEODORE C R.Helicopter flight dynamics simulation with refined aerodynamic modeling[D].College Park,Maryland:University of Maryland,2000:35-105. [12] SPOLDI S,RUCKEL P.High fidelity helicopter simulation using free wake,lifting line tail,and blade element tail rotor models[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society.Fairfax,VA:AHS,2003:92-99. [13] 李攀.旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D].南京:南京航空航天大学,2010:14-58.LI P.Rotor unsteady free-vortex wake model and investigation on high-fidelity modeling of helicopter flight dynamics[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:14-58(in Chinese). [14] GANGWANI S T.Calculation of rotor wake induced empennage airloads[J].Journal of the American Helicopter Society,1983,28(2):37-46. [15] CURTISS H C,QUACKENBUSH T R.The influence of the rotor wake on rotorcraft stability and control[C]//15th European Rotorcraft Forum.Glasgow:ERF,1989:70.1-70.24. [16] FLETCHER T M,BROWN R E.Main rotor-empennage interaction and its effects on helicopter flight dynamics[C]//Proceedings of the American Helicopter Society 63rd Annual Forum.Fairfax,VA:AHS,2007:1-11. [17] WANG B,ZHAO Q J,XU G H,et al.Numerical analysis on noise of rotor with unconventional blade tips based on CFD/Kirchhoff method[J].Chinese Journal of Aeronautics,2013,26(3):572-582. [18] KOMERATH N M,SMITH M J,TUNG C.A review of rotor wake physics and modeling[J].Journal of the American Helicopter Society,2011,56(2):022006-1-21. [19] HE C J,ZHAO J G.Modeling rotor wake dynamics with viscous vortex particle method[J].AIAA Journal,2009,47(4):902-915. [20] 魏鹏,史勇杰,徐国华,等.基于粘性涡模型的旋翼流场数值方法研究[J].航空学报,2011,33(5):771-780.WEI P,SHI Y J,XU G H,et al.Numerical method for simulating rotor flow field based upon viscous vortex model[J].Acta Aeronautica et Astronautica Sinica,2011,33(5):771-780(in Chinese). [21] TAN J F,WANG H W.Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method[J].Aerospace Science and Technology,2013,30(1):255-268. [22] 谭剑锋,王浩文,吴超,等.基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J].航空学报,2014,35(3):643-656.TAN J F,WANG H W,WU C,et al.Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J].Acta Aeronautica et Astronautica Sinica,2014,35(3):643-656(in Chinese). [23] 谭剑锋.直升机旋翼对尾桨非定常气动载荷的影响[J].航空学报,2015,36(10):3228-3240.TAN J F.Influence of helicopter rotor on tail rotor unsteady aerodynamic loads[J].Acta Aeronauica et Astronautica Sinica,2015,36(10):3228-3240(in Chinese). [24] 吴超,谭剑锋,王浩文,等.基于GA/LM混合优化的直升机全机配平算法[J].飞行力学,2014,32(1):5-19.WU C,TAN J F,WANG H W,et al.Optimal trim for helicopter based on GA and LM hybrid algorithm[J].Flight Dynamics,2014,32(1):5-19(in Chinese). [25] CROSS J,BRILLA J,KUFELD R,et al.The modern rotor aerodynamic limits survey:A report and data survey:NASA TM-4446[R].Moffett Field:NASA,1993. [26] 倪先平.直升机手册[M].北京:航空工业出版社,2003:65-68.NI X P.Manual of helicopter[M].Beijing:Aviation Industry Press,2003:65-68(in Chinese).
点击查看大图
计量
- 文章访问数: 1129
- HTML全文浏览量: 100
- PDF下载量: 567
- 被引次数: 0