-
摘要:
为了分析带螺旋静叶诱导轮的内部流动规律,利用计算流体力学(CFD)方法对带螺旋静叶诱导轮进行了仿真计算,研究了其扬程特性和气蚀性能。结果显示,安装螺旋静叶后,使诱导轮的扬程得到很大提升,但是因为螺旋静叶流道中回流较强,增大了回流损失,导致效率下降。随着诱导轮入口压力降低,带螺旋静叶诱导轮的气蚀区域受离心力作用,沿径向发展,由于堵塞螺旋静叶流道,推迟了诱导轮流道的堵塞时间,从而使诱导轮的气蚀性能得到改善。
Abstract:In order to study internal flow pattern, the 3D flow in inducer with helical static blades is numerically computed by using the computational fluid dynamics (CFD). The suction and cavitation performance of the inducer are analyzed. The results show that the head increases with helical static blades, while the efficiency decreases resulted from the strong backflow in helical static blade channels. As the inlet pressure decreases, the cavitation develops along the radial direction, which is influenced by the centrifugal force. The choked helical static blade channels delay the appearance time of blocked inducer, so the cavitation performance of the inducer with helical static blades is improved.
-
Key words:
- inducer /
- helical static blade /
- head /
- backflow /
- cavitation performance
-
表 1 诱导轮主要参数
Table 1. Main parameters of inducer
参数 外径/mm 叶片数 螺距/mm 轮毂直径/mm 数值 188.6 3 160 89.8 表 2 螺旋静叶主要参数
Table 2. Main parameters of helical static blades
参数 内径/mm 叶片数 螺距/mm 外径/mm 数值 192.6 3 160 240 表 3 NPSH=5.70 m时不同网格数预测的诱导轮扬程
Table 3. Head of inducer calculated by different mesh numbers at NPSH=5.70 m
网格数/万 131 178 200 扬程/m 7.01 6.74 6.73 -
[1] 颜子初.高性能螺旋轮设计的探讨[J].导弹与航天运载技术, 1998(5):12-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH805.001.htmYAN Z C.A study on the design of high-performance inducers[J].Missiles and Space Vehicles, 1998(5):12-20(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH805.001.htm [2] TSUJIMOTO Y, KAMIJO K, YOSHIDA Y.A theoretical analysis of rotating cavitation in inducers[J].Journal of Fluids Engineering, 1993, 115:135-141. doi: 10.1115/1.2910095 [3] TSUJIMOTO Y, YOSHIDA Y, MAEKAWA Y, et al.Observations of oscillating cavitation of an inducer[J].Journal of Fluid Engineering, 1997, 119:775-781. doi: 10.1115/1.2819497 [4] HASHIMOTO T, YAMADA H, FUNATSU S, et al.Rotating cavitation in three and four-bladed inducers:AIAA-1997-3026[R].Reston:AIAA, 1997. [5] TSUJIMOTO Y.Cavitation instabilities in turbopump inducers[M]//Fluid Dynamics of Cavitation and Cavitation Turbopumps.[S.l.]:Springer Vienna, 2007, 496:169-190. [6] FURUKAWA A, ISHIZAKA K, WATANABE S.Flow measurement in helical inducer and estimate of fluctuating blade force in cavitation surge phenomena[J].JSME International Journal, 2002, 45(3):672-677. doi: 10.1299/jsmeb.45.672 [7] KAMIJO K, YOSHIDA M, TSUJIMOTO Y.Hydraulic and mechanical performance of LE-7 LOX pump inducer[J].Journal of Propulsion and Power, 1993, 9(6):819-826. doi: 10.2514/3.23695 [8] SHIMURA T.Geometry effects in the dynamic response of cavitating LE-7 liquid oxygen pump[J].Journal of Propulsion and Power, 1995, 11(2):330-336. doi: 10.2514/3.51429 [9] KAMIJO K, YAMADA H, SAKAZUME N, et al.Developmental history of liquid oxygen turbopump for the LE-7 engine[J].The Japan Society for Aeronautical and Space Sciences, 2001, 44(145):155-163. http://www.docin.com/p-81375254.html [10] ZOLADZ T.Observations on rotating cavitation and cavitation surge from the development of the fastrac engine turbopump:AIAA-2000-3403[R].Reston:AIAA, 2000. [11] HASHIMOTO T, YOSHIDA M, WATANABE M, et al.Experimental study on rotating cavitation of rocket propellant pump inducers[J].Journal of Propulsion and Power, 1997, 13(4):488-494. doi: 10.2514/2.5210 [12] YOSHIDA Y, TSUJIMOTO Y, KATAOKA D, et al.Effects of alternate leading edge cutback on unsteady cavitation in 4-blade inducers[J].Journal of Fluids Engineering, 2001, 123(4):762-770. doi: 10.1115/1.1411969 [13] CHOI Y D, KUROKAWA J, IMAMURA H.Suppression of cavitation in inducers by J-grooves[J].Journal of Fluids Engineering, 2007, 129:15-22. doi: 10.1115/1.2375126 [14] WATANABE S, UCHINONO Y, ISHIZAKA K, et al.Suction performance and internal flow of a 2-bladed helical inducer with inlet asymmetric plate[J].Journal of Thermal Science, 2013, 22(5):395-403. doi: 10.1007/s11630-013-0641-y [15] 陈晖, 李斌, 张恩昭, 等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术, 2009, 30(4):390-395. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904001.htmCHEN H, LI B, ZHANG E Z, et al.Rotating cavitation of the high-speed rotational inducer of LPRE[J].Journal of Propulsion Technology, 2009, 30(4):390-395(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904001.htm [16] 郭晓梅, 朱祖超, 崔宝玲, 等.诱导轮长短叶片位置对高速离心泵汽蚀性能的影响[J].工程热物理学报, 2012, 33(10):1695-1698. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201210015.htmGUO X M, ZHU Z C, CUI B L, et al.Inducer-shot blade position influence on cavitation performance of high speed centrifugal pump[J].Journal of Engineering Thermophysics, 2012, 33(10):1695-1698(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201210015.htm [17] 唐飞, 李家文, 李永, 等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进, 2013, 39(3):44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201303007.htmTANG F, LI J W, LI Y, et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion, 2013, 39(3):44-49(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201303007.htm [18] AHKYДИHOB A A. Pacчet и пpoektиpobahиe лpeдbkлюч ehhoй ocebиxpeboй ctyпehи дehtpoъeжhoгo hacoca[M].Москва:Иэдательстьство Мгty им.Н.Э.Баумана, 2005:14-18. [19] KUBOTA A, KATO H, YAMAGUCHI H.A new modelling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J].Journal of Fluid Mechanics, 1992, 240:59-96. doi: 10.1017/S002211209200003X