留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带螺旋静叶诱导轮的气蚀性能

李欣 李家文 王珏 刘中祥

李欣, 李家文, 王珏, 等 . 带螺旋静叶诱导轮的气蚀性能[J]. 北京航空航天大学学报, 2016, 42(12): 2654-2661. doi: 10.13700/j.bh.1001-5965.2015.0818
引用本文: 李欣, 李家文, 王珏, 等 . 带螺旋静叶诱导轮的气蚀性能[J]. 北京航空航天大学学报, 2016, 42(12): 2654-2661. doi: 10.13700/j.bh.1001-5965.2015.0818
LI Xin, LI Jiawen, WANG Jue, et al. Cavitation performance of inducer with helical static blades[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2654-2661. doi: 10.13700/j.bh.1001-5965.2015.0818(in Chinese)
Citation: LI Xin, LI Jiawen, WANG Jue, et al. Cavitation performance of inducer with helical static blades[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2654-2661. doi: 10.13700/j.bh.1001-5965.2015.0818(in Chinese)

带螺旋静叶诱导轮的气蚀性能

doi: 10.13700/j.bh.1001-5965.2015.0818
基金项目: 高超声速冲压发动机技术重点实验室资助项目
详细信息
    作者简介:

    李欣, 男, 博士研究生。主要研究方向:液体火箭发动机涡轮泵。Tel.:010-82338117, E-mail:lixin45@buaa.edu.cn

    通讯作者:

    李家文, 男, 博士, 副教授, 硕士生导师。主要研究方向:液体火箭发动机。Tel.:010-82338529, E-mail:lijiawen@buaa.edu.cn

  • 中图分类号: V434+.212;TH311

Cavitation performance of inducer with helical static blades

Funds: Science and Technology on Scramjet Laboratory
More Information
  • 摘要:

    为了分析带螺旋静叶诱导轮的内部流动规律,利用计算流体力学(CFD)方法对带螺旋静叶诱导轮进行了仿真计算,研究了其扬程特性和气蚀性能。结果显示,安装螺旋静叶后,使诱导轮的扬程得到很大提升,但是因为螺旋静叶流道中回流较强,增大了回流损失,导致效率下降。随着诱导轮入口压力降低,带螺旋静叶诱导轮的气蚀区域受离心力作用,沿径向发展,由于堵塞螺旋静叶流道,推迟了诱导轮流道的堵塞时间,从而使诱导轮的气蚀性能得到改善。

     

  • 图 1  带螺旋静叶诱导轮结构

    Figure 1.  Structure of inducer with helical static blades

    图 2  带螺旋静叶诱导轮平面展开图

    Figure 2.  Planar cascade for inducer with helical static blades

    图 3  计算区域及网格

    Figure 3.  Computed area and calculated grids

    图 4  诱导轮数值计算与实验曲线对比

    Figure 4.  Comparison of numerical calculation and experimental curves of inducer

    图 5  诱导轮吸力面静压对比

    Figure 5.  Comparison of static pressure on suction blade of inducer

    图 6  诱导轮压力面静压对比

    Figure 6.  Comparison of static pressure on pressure blade of inducer

    图 7  诱导轮子午面轴向速度分布和流线

    Figure 7.  Axial velocity distribution and streamline on meridional plane of inducer

    图 8  螺旋静叶流道内的速度矢量

    Figure 8.  Velocity vector in helical static blade channel

    图 9  诱导轮扭矩对比图

    Figure 9.  Comparison of torque for inducer

    图 10  NPSH=5.70 m时不同网格数预测的诱导轮入口的静压分布和气穴分布(fv=10%)

    Figure 10.  Static pressure and cavitation distribution of inducer inlet calculated by different mesh numbers at NPSH=5.70 m (fv=10%)

    图 11  诱导轮气蚀性能对比

    Figure 11.  Comparison of cavitation performance of inducer

    图 12  原诱导轮流道内的气穴分布(fv=10%)

    Figure 12.  Cavitation distribution in original inducer channel (fv=10%)

    图 13  带螺旋静叶诱导轮流道内的气穴分布(fv=10%)

    Figure 13.  Cavitation distribution in inducer channel with helical static blades (fv=10%)

    图 14  带螺旋静叶诱导轮入口fv分布

    Figure 14.  fv distribution at inlet of inducer with helical static blades

    表  1  诱导轮主要参数

    Table  1.   Main parameters of inducer

    参数 外径/mm 叶片数 螺距/mm 轮毂直径/mm
    数值 188.6 3 160 89.8
    下载: 导出CSV

    表  2  螺旋静叶主要参数

    Table  2.   Main parameters of helical static blades

    参数 内径/mm 叶片数 螺距/mm 外径/mm
    数值 192.6 3 160 240
    下载: 导出CSV

    表  3  NPSH=5.70 m时不同网格数预测的诱导轮扬程

    Table  3.   Head of inducer calculated by different mesh numbers at NPSH=5.70 m

    网格数/万 131 178 200
    扬程/m 7.01 6.74 6.73
    下载: 导出CSV
  • [1] 颜子初.高性能螺旋轮设计的探讨[J].导弹与航天运载技术, 1998(5):12-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH805.001.htm

    YAN Z C.A study on the design of high-performance inducers[J].Missiles and Space Vehicles, 1998(5):12-20(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH805.001.htm
    [2] TSUJIMOTO Y, KAMIJO K, YOSHIDA Y.A theoretical analysis of rotating cavitation in inducers[J].Journal of Fluids Engineering, 1993, 115:135-141. doi: 10.1115/1.2910095
    [3] TSUJIMOTO Y, YOSHIDA Y, MAEKAWA Y, et al.Observations of oscillating cavitation of an inducer[J].Journal of Fluid Engineering, 1997, 119:775-781. doi: 10.1115/1.2819497
    [4] HASHIMOTO T, YAMADA H, FUNATSU S, et al.Rotating cavitation in three and four-bladed inducers:AIAA-1997-3026[R].Reston:AIAA, 1997.
    [5] TSUJIMOTO Y.Cavitation instabilities in turbopump inducers[M]//Fluid Dynamics of Cavitation and Cavitation Turbopumps.[S.l.]:Springer Vienna, 2007, 496:169-190.
    [6] FURUKAWA A, ISHIZAKA K, WATANABE S.Flow measurement in helical inducer and estimate of fluctuating blade force in cavitation surge phenomena[J].JSME International Journal, 2002, 45(3):672-677. doi: 10.1299/jsmeb.45.672
    [7] KAMIJO K, YOSHIDA M, TSUJIMOTO Y.Hydraulic and mechanical performance of LE-7 LOX pump inducer[J].Journal of Propulsion and Power, 1993, 9(6):819-826. doi: 10.2514/3.23695
    [8] SHIMURA T.Geometry effects in the dynamic response of cavitating LE-7 liquid oxygen pump[J].Journal of Propulsion and Power, 1995, 11(2):330-336. doi: 10.2514/3.51429
    [9] KAMIJO K, YAMADA H, SAKAZUME N, et al.Developmental history of liquid oxygen turbopump for the LE-7 engine[J].The Japan Society for Aeronautical and Space Sciences, 2001, 44(145):155-163. http://www.docin.com/p-81375254.html
    [10] ZOLADZ T.Observations on rotating cavitation and cavitation surge from the development of the fastrac engine turbopump:AIAA-2000-3403[R].Reston:AIAA, 2000.
    [11] HASHIMOTO T, YOSHIDA M, WATANABE M, et al.Experimental study on rotating cavitation of rocket propellant pump inducers[J].Journal of Propulsion and Power, 1997, 13(4):488-494. doi: 10.2514/2.5210
    [12] YOSHIDA Y, TSUJIMOTO Y, KATAOKA D, et al.Effects of alternate leading edge cutback on unsteady cavitation in 4-blade inducers[J].Journal of Fluids Engineering, 2001, 123(4):762-770. doi: 10.1115/1.1411969
    [13] CHOI Y D, KUROKAWA J, IMAMURA H.Suppression of cavitation in inducers by J-grooves[J].Journal of Fluids Engineering, 2007, 129:15-22. doi: 10.1115/1.2375126
    [14] WATANABE S, UCHINONO Y, ISHIZAKA K, et al.Suction performance and internal flow of a 2-bladed helical inducer with inlet asymmetric plate[J].Journal of Thermal Science, 2013, 22(5):395-403. doi: 10.1007/s11630-013-0641-y
    [15] 陈晖, 李斌, 张恩昭, 等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术, 2009, 30(4):390-395. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904001.htm

    CHEN H, LI B, ZHANG E Z, et al.Rotating cavitation of the high-speed rotational inducer of LPRE[J].Journal of Propulsion Technology, 2009, 30(4):390-395(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904001.htm
    [16] 郭晓梅, 朱祖超, 崔宝玲, 等.诱导轮长短叶片位置对高速离心泵汽蚀性能的影响[J].工程热物理学报, 2012, 33(10):1695-1698. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201210015.htm

    GUO X M, ZHU Z C, CUI B L, et al.Inducer-shot blade position influence on cavitation performance of high speed centrifugal pump[J].Journal of Engineering Thermophysics, 2012, 33(10):1695-1698(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201210015.htm
    [17] 唐飞, 李家文, 李永, 等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进, 2013, 39(3):44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201303007.htm

    TANG F, LI J W, LI Y, et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion, 2013, 39(3):44-49(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201303007.htm
    [18] AHKYДИHOB A A. Pacчet и пpoektиpobahиe лpeдbkлюч ehhoй ocebиxpeboй ctyпehи дehtpoъeжhoгo hacoca[M].Москва:Иэдательстьство Мгty им.Н.Э.Баумана, 2005:14-18.
    [19] KUBOTA A, KATO H, YAMAGUCHI H.A new modelling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J].Journal of Fluid Mechanics, 1992, 240:59-96. doi: 10.1017/S002211209200003X
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  103
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-17
  • 录用日期:  2016-03-25
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答