-
摘要:
食蚜蝇悬停飞行时的抬升角相对较小,在上下拍起始和结束时刻要比拍动中部的大,这样就使得翅尖的拍动轨迹呈现出浅“U”形。为了分析该翅尖轨迹是否会对其气动特性产生影响,利用计算流体力学的方法分别计算了4只食蚜蝇在考虑抬升角和忽略抬升角2种情形下的气动力,分析对比了2种情形下的不同时刻绕翅膀的瞬时流线,并计算比较了2种情形下气动功率系数与平均举力系数的比值。研究结果表明:抬升角的存在会使其维持体重所需的举力增加10%左右;举力增大的同时能耗却比忽略抬升角情形下要低3%左右。
Abstract:For the hovering true hoverfly, stroke deviation angle is relatively small. It is higher at the beginning and end of a downstroke or upstroke, and lower at the middle of the downstroke or upstroke, which leads to a shallow U-shaped wing-tip trajectory. In order to investigate the effect of wing-tip trajectory on the aerodynamics, the measured wing kinematics with deviation angle (or without deviation angle) was used in a computational fluid dynamics method to compute the aerodynamic forces and moments acting on 4 hoverfies. Streamline of the two types of wing-tip trajectory was plotted at spanwise location in the different time of one stroke cycle. The aerodynamic power requirement was computed using the aerodynamic moment. The power coefficients and mean vertical force coefficients of two types of wing-tip trajectories were compared. The results show that the weight-supporting force with deviation angle is approximately 10% larger than that without deviation angle, but the power requirement with deviation angle is approximately 3% less than that without deviation angle.
-
Key words:
- wing-tip trajectory /
- hoverfly /
- hovering flight /
- aerodynamics /
- power
-
表 1 4只食蚜蝇2种翅尖轨迹的平均举力系数和平均水平力系数
Table 1. Mean vertical and horizontal force coefficients of four hoverflies in two types of wing-tip trajectories
翅尖轨迹情形 HF1 HF2 HF3 HF4 CV CH CV CH CV CH CV CH Normal 1.40 0.40 1.67 -0.09 1.52 0.31 1.70 0.35 Real 1.63 0.38 1.85 -0.11 1.70 0.29 1.71 0.35 表 2 4只食蚜蝇2种翅尖轨迹气动功率系数与平均举力系数的比值
Table 2. Ratio of aerodynamic power coefficient to mean vertical force coefficient of four hoverflies in two types of wing-tip trajectories
翅尖轨迹情形 CW, a/CV HF1 HF2 HF3 HF4 Normal 9.00 8.82 10.14 10.63 Real 8.69 8.45 9.88 10.22 -
[1] WEIS-FOGH T.Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production[J].Journal of Experimental Biology, 1973, 59(1):169-230. https://www.researchgate.net/publication/261950208_Quick_estimates_of_flight_fitness_in_hovering_animals_including_novel_mechanisms_for_lift_production [2] MOU X L, LIU Y P, SUN M.Wing motion measurement and aerodynamics of hovering true hoverflies[J].Journal of Experimental Biology, 2011, 214(17):2832-2844. doi: 10.1242/jeb.054874 [3] SUN M, TANG J.Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J].Journal of Experimental Biology, 2002, 205(1):55-70. [4] SUN M, DU G.Lift and power requirements of hovering insect flight[J].Acta Mechanica Sinica, 2003, 19(5):458-469. doi: 10.1007/BF02484580 [5] ZHANG Y L, SUN M.Dynamic flight stability of hovering model insects:Theory versus simulation using equations of motion coupled with Navier-Stokes equations[J].Acta Mechanica Sinica, 2010, 26(4):509-520. doi: 10.1007/s10409-010-0360-5 [6] DU G, SUN M.Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies[J].Journal of Theoretical Biology, 2012, 300(7):19-28. https://www.ncbi.nlm.nih.gov/pubmed/22266123 [7] MOU X L, SUN M.Dynamic flight stability of a model hoverfly in inclined-stroke-plane hovering[J].Journal of Bionic Engineering, 2012, 9(3):294-303. doi: 10.1016/S1672-6529(11)60123-6 [8] LIANG B, SUN M.Dynamic flight stability of a hovering model dragonfly[J].Journal of Theoretical Biology, 2014, 348(7):100-112. https://www.researchgate.net/publication/260023501_Dynamic_flight_stability_of_a_hovering_model_dragonfly?_sg=MVvHVWd4KWzlG6GgPJ3kQMOuKa0MNZtUpW9K3E5et24oJoXvF3xCtXc-mZ_sI6_QDup_o081iyOI72AMgAayQQ [9] XU N, SUN M.Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering[J].Bioinspiration & Biomimetics, 2014, 9(3):036019. https://www.researchgate.net/publication/265090769_Lateral_dynamic_flight_stability_of_a_model_hoverfly_in_normal_and_inclined_stroke-plane_hovering [10] SUN M.Insect flight dynamics:Stability and control[J].Reviews of Modern Physics, 2014, 86(2):615-646. doi: 10.1103/RevModPhys.86.615 [11] ELLINGTON C P.The aerodynamics of hovering insect flight.Ⅲ.Kinematics[J].Philosophical Transactions of the Royal Society B, 1984, 305(1122):41-78. doi: 10.1098/rstb.1984.0051 [12] FRY S N, SAYAMAN R, DICKINSON M H.The aerodynamics of free-flight maneuvers in drosophila[J].Science, 2003, 300(5618):495-498. doi: 10.1126/science.1081944 [13] LIU Y, SUN M.Wing kinematics measurement and aerodynamics of hovering droneflies[J].Journal of Experimental Biology, 2008, 211(13):2014-2025. doi: 10.1242/jeb.016931 [14] 罗国宇.翅膀皱褶和平面形状及翅尖轨迹对昆虫飞行气动力的影响[D].北京:北京航空航天大学, 2005:109-112.LUO G Y.Effect of corrugated wing, planform and wing-tip trajectory on aerodynamics of flight insect[D].Beijing:Beihang University, 2005:109-112(in Chinese). [15] 余永亮, 童秉纲.拍翼轨迹对昆虫前飞气动性能的影响[C]//第十届全国分离流、旋涡和流动控制会议, 2004:155-159.YU Y L, TONG B G.Effect of flapping wing trajectory on insect forward flight aerodynamic[C]//10th National Separation Flow, Vortex and Flow Control Conference, 2004:155-159(in Chinese). [16] DU G, SUN M.Effects of wing deformation on aerodynamic forces in hovering hoverflies[J].Journal of Experimental Biology, 2010, 213(13):2273-2283. doi: 10.1242/jeb.040295 [17] MENG X G, XU L, SUN M.Aerodynamic effects of corrugation in flapping insect wings in hovering flight[J].Journal of Experimental Biology, 2011, 214(3):432-444. doi: 10.1242/jeb.046375 [18] HILGENSTOCK A.A fast method for the elliptic generation of three dimensional grids with full boundary control[C]//Numerical Grid Generation in Computational Fluid Mechanics' 88.Swansea:Pineridge Press, 1988:137-146. [19] ROGERS S E, KWAK D.Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations[J].AIAA Journal, 1990, 28(2):253-262. doi: 10.2514/3.10382 [20] ROGERS S E, KWAK D, KIRIS C.Numerical solution of the incompressible Navier-Stokes equations for steady-state and time-dependent problems[J].AIAA Journal, 1991, 29(1):603-610. https://www.researchgate.net/publication/23896663_Numerical_solution_of_the_incompressible_Navier-Stokes_equations_for_steady-state_and_time-dependent_problems?_sg=UD8ZhMPNgEz2ULicaRutAMENcdFWsYoiks5Nf8aS1-ZB6Q4jbw0F6OoLLMuTykNMXmWQZVf7e4kRFCeh-8KTmQ [21] SUN M, YU X.Aerodynamic force generation in hovering flight in a tiny insect[J].AIAA Journal, 2006, 44(7):1532-1540. doi: 10.2514/1.17356 [22] YU X, SUN M.A computational study of the wing-wing and wing-body interactions of a model insect[J].Acta Mechanica Sinica, 2009, 25(4):421-431. doi: 10.1007/s10409-009-0266-2 [23] AONO H, LIANG F, LIU H.Near-and far-field aerodynamics in insect hovering flight:An integrated computational study[J].Journal of Experimental Biology, 2008, 211(2):239-257. doi: 10.1242/jeb.008649 [24] LIANG B, SUN M.Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions[J].Chinese Journal of Aeronautics, 2011, 24(4):396-409. doi: 10.1016/S1000-9361(11)60047-2 [25] LAN S, SUN M.Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number[J].Acta Mechanica, 2001, 149(1-4):135-147. doi: 10.1007/BF01261668