留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翅尖轨迹对食蚜蝇悬停时气动特性的影响

牟晓蕾 许娜

牟晓蕾, 许娜. 翅尖轨迹对食蚜蝇悬停时气动特性的影响[J]. 北京航空航天大学学报, 2016, 42(12): 2603-2609. doi: 10.13700/j.bh.1001-5965.2015.0843
引用本文: 牟晓蕾, 许娜. 翅尖轨迹对食蚜蝇悬停时气动特性的影响[J]. 北京航空航天大学学报, 2016, 42(12): 2603-2609. doi: 10.13700/j.bh.1001-5965.2015.0843
MOU Xiaolei, XU Na. Effect of wing-tip trajectory on aerodynamics of hovering true hoverfly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2603-2609. doi: 10.13700/j.bh.1001-5965.2015.0843(in Chinese)
Citation: MOU Xiaolei, XU Na. Effect of wing-tip trajectory on aerodynamics of hovering true hoverfly[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2603-2609. doi: 10.13700/j.bh.1001-5965.2015.0843(in Chinese)

翅尖轨迹对食蚜蝇悬停时气动特性的影响

doi: 10.13700/j.bh.1001-5965.2015.0843
基金项目: 

国家自然科学基金 11502228

山东省优秀中青年科学家科研奖励基金 BS2014SW016

详细信息
    作者简介:

    许娜, 女, 博士, 讲师。主要研究方向:仿生流体力学。E-mail:naxu1437@126.com

    通讯作者:

    牟晓蕾, 男, 博士, 讲师。主要研究方向:仿生流体力学。Tel.:0535-6905138, E-mail:mouxiaolei@ytu.edu.cn

  • 中图分类号: V221.3

Effect of wing-tip trajectory on aerodynamics of hovering true hoverfly

Funds: 

National Natural Science Foundation of China 11502228

Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province BS2014SW016

More Information
  • 摘要:

    食蚜蝇悬停飞行时的抬升角相对较小,在上下拍起始和结束时刻要比拍动中部的大,这样就使得翅尖的拍动轨迹呈现出浅“U”形。为了分析该翅尖轨迹是否会对其气动特性产生影响,利用计算流体力学的方法分别计算了4只食蚜蝇在考虑抬升角和忽略抬升角2种情形下的气动力,分析对比了2种情形下的不同时刻绕翅膀的瞬时流线,并计算比较了2种情形下气动功率系数与平均举力系数的比值。研究结果表明:抬升角的存在会使其维持体重所需的举力增加10%左右;举力增大的同时能耗却比忽略抬升角情形下要低3%左右。

     

  • 图 1  翅网格的平面形状和剖面形状

    Figure 1.  Plane shape and sectional shape of wing grid

    图 2  拍动平面与翅膀拍动姿态角的定义

    Figure 2.  Definition of flapping plane and flapping wing attitude angle

    图 3  4只食蚜蝇的翅尖轨迹

    Figure 3.  Wing-tip trajectories of four hoverflies

    图 4  2种翅尖轨迹的CVCHCLCD在一个拍动周期内的变化曲线

    Figure 4.  Times courses of computed coefficients CV, CH, CL and CD of HF1 in one cycle

    图 5  2种翅尖轨迹在=0.200和=0.625时刻r2剖面处的瞬时流线

    Figure 5.  Streamline plots at spanwise location r2 at =0.200 and =0.625 of two types of wing-tip trajectories

    图 6  2种翅尖轨迹在=0.350和=0.875时刻r2剖面处的瞬时流线

    Figure 6.  Streamline plots at spanwise location r2 at =0.350 and =0.875 of two types of wing-tip trajectories

    图 7  HF1真实翅尖轨迹的抬升角及无量纲抬升角速度曲线

    Figure 7.  Curves of deviation angle and non-dimensional deviation angular velocity of HF1 in real wing tip trajectory

    图 8  各坐标轴角速度矢量示意图

    Figure 8.  Schematic diagram of angular velocity vector in different axes

    表  1  4只食蚜蝇2种翅尖轨迹的平均举力系数和平均水平力系数

    Table  1.   Mean vertical and horizontal force coefficients of four hoverflies in two types of wing-tip trajectories

    翅尖轨迹情形 HF1 HF2 HF3 HF4
    CV CH CV CH CV CH CV CH
    Normal 1.40 0.40 1.67 -0.09 1.52 0.31 1.70 0.35
    Real 1.63 0.38 1.85 -0.11 1.70 0.29 1.71 0.35
    下载: 导出CSV

    表  2  4只食蚜蝇2种翅尖轨迹气动功率系数与平均举力系数的比值

    Table  2.   Ratio of aerodynamic power coefficient to mean vertical force coefficient of four hoverflies in two types of wing-tip trajectories

    翅尖轨迹情形 CW, a/CV
    HF1 HF2 HF3 HF4
    Normal 9.00 8.82 10.14 10.63
    Real 8.69 8.45 9.88 10.22
    下载: 导出CSV
  • [1] WEIS-FOGH T.Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production[J].Journal of Experimental Biology, 1973, 59(1):169-230. https://www.researchgate.net/publication/261950208_Quick_estimates_of_flight_fitness_in_hovering_animals_including_novel_mechanisms_for_lift_production
    [2] MOU X L, LIU Y P, SUN M.Wing motion measurement and aerodynamics of hovering true hoverflies[J].Journal of Experimental Biology, 2011, 214(17):2832-2844. doi: 10.1242/jeb.054874
    [3] SUN M, TANG J.Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J].Journal of Experimental Biology, 2002, 205(1):55-70.
    [4] SUN M, DU G.Lift and power requirements of hovering insect flight[J].Acta Mechanica Sinica, 2003, 19(5):458-469. doi: 10.1007/BF02484580
    [5] ZHANG Y L, SUN M.Dynamic flight stability of hovering model insects:Theory versus simulation using equations of motion coupled with Navier-Stokes equations[J].Acta Mechanica Sinica, 2010, 26(4):509-520. doi: 10.1007/s10409-010-0360-5
    [6] DU G, SUN M.Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies[J].Journal of Theoretical Biology, 2012, 300(7):19-28. https://www.ncbi.nlm.nih.gov/pubmed/22266123
    [7] MOU X L, SUN M.Dynamic flight stability of a model hoverfly in inclined-stroke-plane hovering[J].Journal of Bionic Engineering, 2012, 9(3):294-303. doi: 10.1016/S1672-6529(11)60123-6
    [8] LIANG B, SUN M.Dynamic flight stability of a hovering model dragonfly[J].Journal of Theoretical Biology, 2014, 348(7):100-112. https://www.researchgate.net/publication/260023501_Dynamic_flight_stability_of_a_hovering_model_dragonfly?_sg=MVvHVWd4KWzlG6GgPJ3kQMOuKa0MNZtUpW9K3E5et24oJoXvF3xCtXc-mZ_sI6_QDup_o081iyOI72AMgAayQQ
    [9] XU N, SUN M.Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering[J].Bioinspiration & Biomimetics, 2014, 9(3):036019. https://www.researchgate.net/publication/265090769_Lateral_dynamic_flight_stability_of_a_model_hoverfly_in_normal_and_inclined_stroke-plane_hovering
    [10] SUN M.Insect flight dynamics:Stability and control[J].Reviews of Modern Physics, 2014, 86(2):615-646. doi: 10.1103/RevModPhys.86.615
    [11] ELLINGTON C P.The aerodynamics of hovering insect flight.Ⅲ.Kinematics[J].Philosophical Transactions of the Royal Society B, 1984, 305(1122):41-78. doi: 10.1098/rstb.1984.0051
    [12] FRY S N, SAYAMAN R, DICKINSON M H.The aerodynamics of free-flight maneuvers in drosophila[J].Science, 2003, 300(5618):495-498. doi: 10.1126/science.1081944
    [13] LIU Y, SUN M.Wing kinematics measurement and aerodynamics of hovering droneflies[J].Journal of Experimental Biology, 2008, 211(13):2014-2025. doi: 10.1242/jeb.016931
    [14] 罗国宇.翅膀皱褶和平面形状及翅尖轨迹对昆虫飞行气动力的影响[D].北京:北京航空航天大学, 2005:109-112.

    LUO G Y.Effect of corrugated wing, planform and wing-tip trajectory on aerodynamics of flight insect[D].Beijing:Beihang University, 2005:109-112(in Chinese).
    [15] 余永亮, 童秉纲.拍翼轨迹对昆虫前飞气动性能的影响[C]//第十届全国分离流、旋涡和流动控制会议, 2004:155-159.

    YU Y L, TONG B G.Effect of flapping wing trajectory on insect forward flight aerodynamic[C]//10th National Separation Flow, Vortex and Flow Control Conference, 2004:155-159(in Chinese).
    [16] DU G, SUN M.Effects of wing deformation on aerodynamic forces in hovering hoverflies[J].Journal of Experimental Biology, 2010, 213(13):2273-2283. doi: 10.1242/jeb.040295
    [17] MENG X G, XU L, SUN M.Aerodynamic effects of corrugation in flapping insect wings in hovering flight[J].Journal of Experimental Biology, 2011, 214(3):432-444. doi: 10.1242/jeb.046375
    [18] HILGENSTOCK A.A fast method for the elliptic generation of three dimensional grids with full boundary control[C]//Numerical Grid Generation in Computational Fluid Mechanics' 88.Swansea:Pineridge Press, 1988:137-146.
    [19] ROGERS S E, KWAK D.Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations[J].AIAA Journal, 1990, 28(2):253-262. doi: 10.2514/3.10382
    [20] ROGERS S E, KWAK D, KIRIS C.Numerical solution of the incompressible Navier-Stokes equations for steady-state and time-dependent problems[J].AIAA Journal, 1991, 29(1):603-610. https://www.researchgate.net/publication/23896663_Numerical_solution_of_the_incompressible_Navier-Stokes_equations_for_steady-state_and_time-dependent_problems?_sg=UD8ZhMPNgEz2ULicaRutAMENcdFWsYoiks5Nf8aS1-ZB6Q4jbw0F6OoLLMuTykNMXmWQZVf7e4kRFCeh-8KTmQ
    [21] SUN M, YU X.Aerodynamic force generation in hovering flight in a tiny insect[J].AIAA Journal, 2006, 44(7):1532-1540. doi: 10.2514/1.17356
    [22] YU X, SUN M.A computational study of the wing-wing and wing-body interactions of a model insect[J].Acta Mechanica Sinica, 2009, 25(4):421-431. doi: 10.1007/s10409-009-0266-2
    [23] AONO H, LIANG F, LIU H.Near-and far-field aerodynamics in insect hovering flight:An integrated computational study[J].Journal of Experimental Biology, 2008, 211(2):239-257. doi: 10.1242/jeb.008649
    [24] LIANG B, SUN M.Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions[J].Chinese Journal of Aeronautics, 2011, 24(4):396-409. doi: 10.1016/S1000-9361(11)60047-2
    [25] LAN S, SUN M.Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number[J].Acta Mechanica, 2001, 149(1-4):135-147. doi: 10.1007/BF01261668
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  723
  • HTML全文浏览量:  59
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 录用日期:  2016-01-08
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答