Numerical simulation to static ground effect of delta wings with different sweep angles
-
摘要:
采用数值模拟的方法研究了不同后掠角三角翼的静态地面效应,通过对气动力和流场特性的分析发现,随着后掠角的减小,地面对迎风面下流动的阻滞作用增强,地效导致的迎风面气动力增量也随之增大。地效导致的背风面气动力增量同样随着后掠角的减小而增大,但在不同的后掠角范围内,地效诱导背风面气动力增量的机理不同:中大后掠角下,其主要通过增强前缘涡强度诱导更大的吸力,而小后掠角下,其主要通过促进前缘涡向内扩散增大吸力范围。
Abstract:In this paper, the static ground effect of delta wings with different sweep angles is investigated by numerical simulation. The analyses of aerodynamic force and flow field characteristics show that in ground effect, the "block effect" of ground enhances the windward surface pressure; with the sweep angle decreasing, the "block effect" will be further strengthened, and thus the windward surface aerodynamic force increments due to ground effect increase. Besides, the leeward surface aerodynamic force increments due to ground effect also increase with the sweep angle decreasing, but flow physics is not the same for different sweep angles:for medium and high sweep angles, the leeward surface aerodynamic force increments due to ground effect are attributed to the increase of the suction induced by the enhanced leading edge vortex; for low sweep angles, they are attributed to the suction area extension, which results from the movement of the dispersive leading edge vortex.
-
Key words:
- sweep angle /
- delta wing /
- static ground effect /
- windward surface /
- leading edge vortex
-
-
[1] QU Q L, WANG W, LIU P Q, et al.Airfoil aerodynamics in ground effect for wide range of angles of attack[J].AIAA Journal, 2015, 53(4):1048-1061. doi: 10.2514/1.J053366 [2] CORDA S, STEPHENSON M T, BURCHAM F W, et al.Dynamic ground effects flight test of an F-15 aircraft:N95-33024[R].Washington, D.C.:NASA, 1994. [3] ROZHDESTVENSKY K V.Wing-in-ground effect vehicles[J].Progress in Aerospace Sciences, 2006, 42(3):211-283. doi: 10.1016/j.paerosci.2006.10.001 [4] QU Q L, JIA X, WANG W, et al.Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J].Aerospace Science and Technology, 2014, 38:56-63. doi: 10.1016/j.ast.2014.07.016 [5] SCHWEIKHARD W.A method for in-flight measurement of ground effect on fixed-wing aircraft[J].Journal of Aircraft, 1967, 4(2):101-104. doi: 10.2514/3.43804 [6] BAKER P A, SCHWEIKHARD W G, YOUNG W R.Flight evaluation of ground effect on several low-aspect-ratio airplanes:NASA-TN-D-6053[R].Washington, D.C.:NASA, 1970. [7] CURRY R E.Dynamic ground effect for a cranked arrow wing airplane:AIAA-1997-3649[R].Reston:AIAA, 1997. [8] CHANG R C, MUIRHEAD V U.Investigation of dynamic ground effect:N87-24410[R].Washington, D.C.:NASA, 1987. [9] CHANG R C, MUIRHEAD V U.Effect of sink rate on ground effect of low-aspect-ratio wings[J].Journal of Aircraft, 1987, 24(3):176-180. doi: 10.2514/3.45413 [10] CHANG R C.An experimental investigation of dyanmic ground effect[D].Lawrence, KS:University of Kansas, 1985. [11] LEE P H, LAN C E, MUIRHEAD V U.An experimental investigation of dynamic ground effect:NASA-CR-4105[R].Washington, D.C.:NASA, 1987. [12] LEE P H, LAN C E, MUIRHEAD V U.Experimental investigation of dynamic ground effect[J].Journal of Aircraft, 1989, 26(6):497-498. doi: 10.2514/3.45793 [13] QU Q L, LU Z, GUO H, et al.Numerical investigation of the aerodynamics of a delta wing in ground effect[J].Journal of Aircraft, 2014, 52(1):329-340. [14] SPALART P, ALLMARAS S.A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R].Reston:AIAA, 1992. [15] MORTON S.Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J].Journal of Aircraft, 2009, 46(3):746-755. doi: 10.2514/1.4659 [16] CUMMINGS R M, SCHÜTTE A.Detached-eddy simulation of the vortical flow field about the VFE-2 delta wing[J].Aerospace Science and Technology, 2013, 24(1):66-76. doi: 10.1016/j.ast.2012.02.007 [17] QIN Y P, QU Q L, LIU P Q, et al.DDES study of the aerodynamic forces and flow physics of a delta wing in static ground effect[J].Aerospace Science and Technology, 2015, 43:423-436. doi: 10.1016/j.ast.2015.04.004 [18] RIOU J, GARNIER E, BASDEVANT C.Compressibility effects on the vortical flow over a 65° sweep delta wing[J].Physics of Fluids, 2010, 22:035102. doi: 10.1063/1.3327286 [19] RODRIGUEZ O.Experimental investigations on the VFE-2 configuration at ONERA:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009. [20] FRITZ W.Numerical solutions for the VFE-2 configuration on structured grids at EADS-MAS:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009. [21] CHEN M Q, LIU P Q, GUO H, et al.Effect of sideslip on high-angle-of-attack vortex flow over close-coupled canard configuration[J].Journal of Aircraft, 2015, 53(1):1-14. doi: 10.2514/1.C033305 期刊类型引用(15)
1. 姚静,杨帅,王梦阳,王佩. 一种低功耗数字阀建模、性能分析及试验验证. 航空学报. 2025(02): 324-339 . 百度学术
2. 徐纯洁,谢方伟,凡镕瑞,魏汝路,田祖织. 考虑电磁铁线圈构型的高速开关阀动态特性分析. 西安交通大学学报. 2024(04): 211-220 . 百度学术
3. 刘广阔. 负载口独立控制的压铸机比例插装压射速度系统研究. 液压气动与密封. 2024(06): 73-79 . 百度学术
4. 吴会刚,韦文术,徐龙. 高速开关阀动态响应特性研究及性能优化. 机床与液压. 2024(12): 119-126 . 百度学术
5. 朱牧之,黄兴溶,张杰,刘勇. 电机直驱式高速开关阀及其系统特性研究. 南京工程学院学报(自然科学版). 2024(01): 24-32 . 百度学术
6. 陈楠,魏汝路,谢方伟. 高速开关阀阀芯频响及流量输出特性研究. 机床与液压. 2024(19): 159-164 . 百度学术
7. 何新军,何小群. 基于普通换向阀的高精度油缸位置控制. 液压与气动. 2023(01): 167-174 . 百度学术
8. 马克凡,王立勇,唐长亮,贾然. 基于高速开关阀的湿式离合器缓冲控制系统研究. 机床与液压. 2023(02): 174-179 . 百度学术
9. 高强,朱勇,钱鹏飞,张兵,王杰. 阵列压电叠堆驱动高速开关阀的设计与仿真分析. 液压与气动. 2023(09): 56-62 . 百度学术
10. 熊志文,崔玉国,蔡永根,马剑强,杨依领. 压电执行器输出位移的精密自感知. 仪器仪表学报. 2023(07): 28-36 . 百度学术
11. 赵天宇,吴帅,李文顶,房成,傅俊勇. 基于模型的数字式电液作动器智能控制方法. 飞控与探测. 2022(01): 48-56 . 百度学术
12. 张啸甫,施光林. 基于变溢流压力的电液机械臂节能控制策略. 液压与气动. 2022(07): 25-30 . 百度学术
13. 毛景禄,王聪,张彦伟,苗峰,崔雷. 复杂时变环境高速开关阀自适应控制算法. 液压与气动. 2022(12): 109-114 . 百度学术
14. 赵凯平,何涛,王传礼,史瑞. 双弹簧电液激振缸振幅补偿性能的研究. 工程设计学报. 2021(06): 737-745 . 百度学术
15. 刘伟静,赵超泽,王东,徐文丽,姚宁,王小涛. 基于CC430F6137的工业手柄摇杆优化模型研究. 自动化仪表. 2021(12): 77-81 . 百度学术
其他类型引用(12)
-