High squint helicopter-borne terahertz ViSAR vibration compensation imaging algorithm
-
摘要:
太赫兹视频合成孔径雷达(ViSAR)载波波长短,直升机载平台的微小高频振动将引起回波信号相位的显著变化,进而严重恶化ViSAR的成像性能。本文在建立斜视ViSAR平台振动成像几何模型的基础上,提出了大斜视模式下的振动相位误差补偿成像算法。该算法结合运动补偿原理,将斜视成像侧视化处理,然后采用改进的多普勒Keystone变换方法在二维频域校正由平台振动引起的距离单元徙动,最终在距离多普勒域实现振动相位误差补偿。仿真结果验证了该算法的有效性。
-
关键词:
- 太赫兹 /
- 大斜视 /
- 视频合成孔径雷达(ViSAR) /
- 平台振动补偿 /
- 多普勒Keystone变换
Abstract:With advantages such as fast imaging frame rate, high resolutions and penetration through dust and smoke, video synthetic aperture radar (ViSAR) has a broad application prospect. But for ViSAR that works in terahertz carrier frequency, helicopter platform's tiny high frequency vibration will cause obvious changes in echo phase and degrade the imaging quality. According to helicopter platform's vibration characteristics and based on the squint platform vibration imaging geometry model, this paper proposes a terahertz ViSAR vibration phase error compensation imaging algorithm in high squint mode. First, the squint imaging is equivalent to side-looking imaging based on motion compensation principle, and then modified Doppler Keystone transform is performed to correct the range cell migration induced by platform vibration in 2D frequency domain. Finally, the analytic expression of vibration phase error is gained in range-Doppler domain and the phase error compensation is achieved via parametric autofocus method. Simulation results verify the effectiveness of the proposed algorithm.
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 载波频率f0/GHz 200 场景中心斜距rC/km 2 直升机飞行速度v/(m·s-1) 50 脉冲重复频率PRF/kHz 3 脉冲带宽Tp/GHz 1.5 距离向采样频率Fs/GHz 1.8 -
[1] MILLER J, BISHOP E, DOERRY A.An application of backprojection for Video SAR image formation exploiting a subaperture circular shift register[C]//Proceedings of Society of Photo-Optical Instrumentation Engineers.Bellingham, WA:SPIE, 2013, 4:1-14. [2] DAMINI A, MANTLE V, DAVIDSON G.A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence[C]//2013 IEEE Radar Conference.Piscataway, NJ:IEEE Press, 2013, 4:1-5. [3] CHENG B B, JIANG G, WANG C.Real-time imaging with a 140 GHz inverse synthetic aperture radar[J].IEEE Transactions on Terahertz Science and Technology, 2013, 3(5):594-605. doi: 10.1109/TTHZ.2013.2268317 [4] 梁美彦, 邓朝, 张存林.太赫兹雷达成像技术[J].太赫兹科学与电子信息学报, 2013, 11(2):189-196. http://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htmLIANG M Y, DENG Z, ZHANG C L.Terahertz radar imaging technology[J].Journal of Terahertz Science and Electronic Information, 2013, 11(2):189-196(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htm [5] HEREMANS R, VANDEWAL M, ACHEROY M.Synthetic aperture imaging extended towards novel THz sensors[C]//2008 IEEE Sensors, SENSORS 2008.Piscataway, NJ:IEEE Press, 2008:438-441. [6] ZHANG B, PI Y M, LI J.Terahertz imaging radar with inverse aperture synthesis techniques:System structure, signal processing, and experiment results[J].IEEE Sensors Journal, 2015, 15(1):290-299. doi: 10.1109/JSEN.2014.2342495 [7] 魏明贵, 梁达川, 谷建强, 等.太赫兹时域雷达成像研究[J].雷达学报, 2015, 4(2):222-229. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201502014.htmWEI M G, LIANG D C, GU J Q.Terahertz radar imaging based on time-domain spectroscopy[J].Journal of Radars, 2015, 4(2):222-229(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201502014.htm [8] CHENG B B, JIANG G, WANG C.Real-time imaging with a 140 GHz inverse synthetic aperture radar[J].IEEE Transactions on Terahertz Science and Technology, 2013, 3(5):594-604. doi: 10.1109/TTHZ.2013.2268317 [9] 林华.无人机载太赫兹合成孔径雷达成像分析与仿真[J].信息与电子工程, 2010, 8(4):373-377. http://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201004002.htmLIN H.Analysis and simulation of UAV terahertz wave synthetic aperture radar imaging[J].Information and Electronic Engineering, 2010, 8(4):373-377(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201004002.htm [10] 沈斌.THz频段SAR成像及微多普勒目标检测与分离技术研究[D].成都:电子科技大学, 2008:27-28. http://cdmd.cnki.com.cn/Article/CDMD-10614-2008122099.htmSHEN B.THz-SAR imaging and micro-Doppler target detection and separation[D].Chengdu:University of Electronic Science and Technology of China, 2008:27-28(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10614-2008122099.htm [11] KIRK J.Motion compensation for synthetic aperture radar[J].IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(3):338-348. [12] 赵雨露, 张群英, 李超.视频合成孔径雷达振动误差分析及补偿方案研究[J].雷达学报, 2015, 4(2):230-239. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201502015.htmZHAO Y L, ZHANG Q Y, LI C.Vibration error analysis and motion compensation of video synthetic aperture radar[J].Journal of Radars, 2015, 4(2):230-239. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201502015.htm [13] HONG X R, ZHANG T, DU Z C.Helicopter-borne SAR imaging processing of chirp-stepped signal[C]//2006 CIE International Conference on Radar.Piscataway, NJ:IEEE Press, 2006:1-5. [14] CERUTI A, LIVERANI A, RECANATESI L.Improving helicopter flight simulation with rotor vibrations[C]//Proceedings of International Conference on Innovative Methods in Product Design, 2011:636-645. [15] 梁毅, 王虹现, 邢孟道.基于FMCW的大斜视SAR成像研究[J].电子与信息学报, 2009, 31(4):776-780. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200904006.htmLIANG Y, WANG H X, XING M D.Imaging study of high squint SAR based on FMCW[J].Journal of Electronics and Information, 2009, 31(4):776-780(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200904006.htm [16] WANG H, ZHANG Y, WANG B B.A novel helicopter-borne terahertz SAR imaging algorithm based on Keystone transform[C]//International Conference on Signal Processing.Piscataway, NJ:IEEE Press, 2014:1958-1962. [17] 周峰, 王琦, 邢孟道.一种机载大斜视SAR运动补偿方法[J].电子学报, 2007, 35(3):463-468. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200703015.htmZHOU F, WANG Q, XING M D.A squint airborne SAR motion compensation method[J].Chinese Journal of Electronics, 2007, 35(3):463-468(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200703015.htm [18] 吴勇, 宋红军, 彭靳.基于时域去走动的SAR大斜视CS成像算法[J].电子与信息学报, 2010, 32(3):593-598. doi: 10.3724/SP.J.1146.2009.00472WU Y, SONG H J, PENG J.Chirp scaling imaging algorithm of SAR in high squint mode based on range walk removal[J].Journal of Electronics and Information, 2010, 32(3):593-598(in Chinese). doi: 10.3724/SP.J.1146.2009.00472 [19] MOREIRA A, HUANG Y.Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5):1029-1040. doi: 10.1109/36.312891 [20] ZHANG Y, SUN J P, LEI P, et al.SAR-based paired echo focusing and suppression of vibrating targets[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7593-7605. doi: 10.1109/TGRS.2014.2314681