留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TheoH方差的陀螺随机误差系数动态提取

朱战辉 汪立新 陈伟峰 薛亮

朱战辉, 汪立新, 陈伟峰, 等 . 基于TheoH方差的陀螺随机误差系数动态提取[J]. 北京航空航天大学学报, 2017, 43(1): 18-25. doi: 10.13700/j.bh.1001-5965.2016.0048
引用本文: 朱战辉, 汪立新, 陈伟峰, 等 . 基于TheoH方差的陀螺随机误差系数动态提取[J]. 北京航空航天大学学报, 2017, 43(1): 18-25. doi: 10.13700/j.bh.1001-5965.2016.0048
ZHU Zhanhui, WANG Lixin, CHEN Weifeng, et al. Dynamic extraction of stochastic error coefficients for gyro based on TheoH variance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 18-25. doi: 10.13700/j.bh.1001-5965.2016.0048(in Chinese)
Citation: ZHU Zhanhui, WANG Lixin, CHEN Weifeng, et al. Dynamic extraction of stochastic error coefficients for gyro based on TheoH variance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 18-25. doi: 10.13700/j.bh.1001-5965.2016.0048(in Chinese)

基于TheoH方差的陀螺随机误差系数动态提取

doi: 10.13700/j.bh.1001-5965.2016.0048
基金项目: 

国家自然科学基金 61503390

详细信息
    作者简介:

    朱战辉,男,博士研究生,工程师。主要研究方向:惯性系统及测试、数字信号处理

    通讯作者:

    汪立新,男,博士,教授,博士生导师。主要研究方向:惯性技术及测试。E-mail:wanglixin066@sina.cn.

  • 中图分类号: V241.5

Dynamic extraction of stochastic error coefficients for gyro based on TheoH variance

Funds: 

National Natural Science Foundation of China 61503390

More Information
  • 摘要:

    针对运用动态Allan方差提取陀螺随机误差系数时,用截断窗截取原始信号造成方差估计置信度降低的问题,提出运用混合理论方差(TheoH方差)来代替Allan方差对截断窗内的数据进行分析,并提取出随时间变化的陀螺随机误差系数。TheoH方差改善了Allan方差计算时相关时间只能达到信号总时间的二分之一及长相关时间下方差估计置信度降低的问题,其计算的相关时间可以达到数据总时间的四分之三,有效改善了动态算法因数据截取造成误差系数估计置信度下降的缺陷。从对仿真信号和光学陀螺实测数据处理结果上来看,本文方法既能准确地对动态条件下陀螺量测信号的随机误差进行细化辨识,又能大幅提高中、长相关时间下方差估计的置信度。

     

  • 图 1  Theo1方差的采样原理

    Figure 1.  Sampling principle of Theo1 variance

    图 2  TheoH标准差的合成过程

    Figure 2.  Forming process of TheoH deviation

    图 3  DAVAR方法设计流程图

    Figure 3.  Flowchart of DAVAR method design

    图 4  陀螺输出随机误差仿真模型

    Figure 4.  Stochastic error simulation model of gyro output

    图 5  仿真信号的Allan标准差、Theo1标准差和TheoH标准差分析

    Figure 5.  Analysis by Allan deviantion,Theo1 deviantion and TheoH deviantion for simulated signal

    图 6  实测信号的DAVAR、DHVAR-A和DHVAR分析

    Figure 6.  Analysis by DAVAR,DHVAR-A andDHVAR for measured signal

    图 7  零偏不稳定性的动态提取

    Figure 7.  Dynamic extraction of bias instability

    图 8  陀螺随机误差输出

    Figure 8.  Output of stochastic error of gyro

    图 9  陀螺实测信号随机误差的DHVAR分析

    Figure 9.  DHVAR analysis of gyro measued signal stochastic error

    图 10  各随机误差系数随时间变化曲线

    Figure 10.  Time-variant curves of different stochasticerror coefficients

    图 11  零偏不稳定性的DAVAR和DHVAR动态提取

    Figure 11.  Dynamic extraction of bias instabilitywith DAVAR and DHVAR

    表  1  各种动态方法下随机误差系数的方差估计值

    Table  1.   Variance estimation of stochastic error coefficientsby different dynamic methods

    系数 单位 期望值 DAVAR DHVAR-A DHVAR
    Q μrad 0.006 3 0.006 7 0.006 8 0.006 7
    N ( )/h1/2 0.001 0 0.001 1 0.001 1 0.001 1
    B ( )/h 0.026 5 0.035 4 0.030 8 0.029 9
    K (°)/h3/2 0.451 9 1.052 9 0.735 7 0.706 2
    R (°)/h2 1.119 3 9.797 3 5.806 5 5.622 4
    下载: 导出CSV

    表  2  稳定条件下随机误差系数的估计值

    Table  2.   Estimation of stochastic error coefficient under steady condition

    系数 单位 量纲 期望值 DAVAR DHVAR-A DHVAR
    Q μrad ×10-3 0.400 0.047 0.043 0.041
    N (°)/h1/2 ×10-4 0.011 0.011 0.011 0.011
    B ( )/h ×10-2 0.520 0.732 0.545 0.533
    K ( )/h3/2 14.1 38.9 20.7 18.3
    R (°)/h2 106 735 256 219
    下载: 导出CSV
  • [1] 吕琳,全伟.基于GP+GA的陀螺仪随机误差建模分析[J].北京航空航天大学学报,2015,41(6):1135-1140. http://bhxb.buaa.edu.cn/CN/abstract/abstract13300.shtml

    LV L,QUAN W.Modeling and analysis of gyroscope's random drift based on GA+GP method[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(6):1135-1140(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13300.shtml
    [2] 徐定杰,苗志勇,沈锋,等. MEMS陀螺随机漂移误差系数的动态提取[J].宇航学报,2015,36(2):217-223. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201502014.htm

    XU D J,MIAO Z Y,SHEN F,et al. Dynamic extraction MEMS gyro random error coefficients[J]. Journal of Astronautics,2015,36(2):217-223(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201502014.htm
    [3] ZHANG C X,WANG L,GAO S,et al.Dynamic Allan variance analysis for stochastic errors of fiber optic gyroscope[J].Infrared and Laser Engineering,2014,43(9):3081-3088.
    [4] 王新龙,李娜.MEMS陀螺随机误差的建模与分析[J].北京航空航天大学学报,2012,38(2):170-174. http://bhxb.buaa.edu.cn/CN/abstract/abstract12196.shtml

    WANG X L,LI N.Error modeling and analysis for random drift of MEMS gyroscopes[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(2):170-174(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12196.shtml
    [5] 汤霞清,程旭维,高军强.光学陀螺随机误差特性的混合理论方差方法分析[J].兵工学报,2015,36(9):1688-1695. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201509013.htm

    TANG X Q,CHENG X W,GAO J Q. Hybrid theoretical variance analysis for random error properties of optic gyroscope[J]. Acta Armamentarii,2015,36(9):1688-1695(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201509013.htm
    [6] GALLEANI L.Dynamic Allan variance III:Confidence and detection surfaces[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2011,58(8):1550-1558. doi: 10.1109/TUFFC.2011.1982
    [7] GALLEANI L,TAVELLA P.The dynamic Allan variance[J]. IEEE Transaction on Ultrasonics, Ferroelectrics,and Frequency Control,2009,56(3):450-460. doi: 10.1109/TUFFC.2009.1064
    [8] LI J T,FANG J C. Not fully overlapping Allan variance and total variance for inertial sensor stochastic error analysis[J].IEEE Transactions on Instrumentation and Measurement,2013,62(10):2659-2672. doi: 10.1109/TIM.2013.2258769
    [9] HOWE D A.The total deviation approach to long-term characterization of frequency stability[J].IEEE Transactions on Ultrasonic,Ferroelectrics,and Frequency Control,2000,47(5):1102-1110. doi: 10.1109/58.869040
    [10] HOWE D A,TASSET T N.Theol:Characterization of very long-term frequency stability[C]//Proceedings of the 18th European Frequency and Time Forum (EFTF 04),Guildford,2004:581-587.
    [11] 程旭维,汤霞清,黄湘远.基于#1理论方差的光学陀螺长期随机误差分析[J].中国激光,2014,41(10):146-153.

    CHENG X W,TANG X Q,HUANG X Y.Investigation on random error properties of optic gyroscope based on theoretical variance #1[J].Chinese Journal of Lasers,2014,41(10):146-153(in Chinese).
    [12] HOWE D A.ThêoH:A hybrid,high-confidence statistic that improves on the Allan deviation[J].Metrologia,2006,43(4):322-331. doi: 10.1088/0026-1394/43/4/S20
    [13] LEVINE J,PARKER T E.The algorithm used to realize UTC(NIST)[C]//2002 IEEE International Frequency Control Symposium. Piscataway,NJ:IEEE Press,2002:537-542.
    [14] 金毅,吴训忠,谢聂.基于Allan方差的光纤陀螺随机漂移建模与仿真[J].应用光学,2014,35(3):547-551. http://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201403039.htm

    JIN Y,WU X Z,XIE N.Modeling and simulation of FOG random drift based on Allan variance[J].Journal of Applied Optics,2014,35(3):547-551(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201403039.htm
    [15] 韦官余,徐伯健,丁阳,等.动态阿伦方差辅助的卡尔曼滤波算法在GPS/INS组合导航中的应用[C]//第三届中国卫星导航学术年会电子文集,2012:330-334.

    WEI G Y,XU B J,DING Y,et al.Dynamic Allan variance aided Kalman filter in GPS/INS integrated navigation[C]//The Third China Satellite Navigation Conference,2012:330-334(in Chinese).
    [16] 汪立新,朱战辉,黄松涛.基于峭度和自适应滑动窗的陀螺动态特性分析方法[J].中国惯性技术学报,2015,23(4):533-539. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201504021.htm

    WANG L X,ZHU Z H,HUANG S T.Dynamic characteristics analysis method for gyroscope based on kurtosis and adaptive sliding window[J].Journal of Chinese Inertial Technology,2015,23(4):533-539(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201504021.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  192
  • PDF下载量:  769
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 录用日期:  2016-03-18
  • 网络出版日期:  2017-01-20

目录

    /

    返回文章
    返回
    常见问答