Parameter design method on a differential piston warm gas self-pressurization system
-
摘要:
针对基于单组元肼类物质为工质的液体姿轨控发动机差动活塞式燃气自增压系统,分析了系统的工作原理,提出了系统的参数设计方法,建立了系统的参数设计流程,给出了系统的起动压力计算模型和自锁状态计算方法,并进行了实例研究。结果表明:系统最低起动压力与压力放大贮箱气体腔初始体积、活塞摩擦力和推进剂贮箱初始气垫体积直接相关;系统自锁后,推进剂贮箱压力的设计状态受推进剂贮箱所允许的最大压力上偏差和流量调节器与推进剂贮箱间的压降所约束;推进剂贮箱的工作压力范围是可以根据需要通过燃气自增压系统的设计来保证的。
Abstract:This paper studies the working principle of the differential piston warm gas self-pressurization system of liquid attitude and divert control engines working with monopropellant-hydrazine, based on which a parametric design method and the corresponding design process of the system parameters are presented. New models of the system starting pressure and system self-locking state are also introduced. A case study is carried out and results show that the minimum system starting pressure is directly related to the initial volume of the gas chamber, the friction force of the piston, and the initial volume of the air cushion of the propellant tank; the design state of the propellant tank pressure after the system self-locking is constrained by the upper pressure deviation allowed by the propellant tank and the pressure drop between liquid regulator and propellant tank; the range of working pressure of the propellant tank can be guaranteed by the design of the pressurization system.
-
表 1 系统设计目标参数分类
Table 1. Classification of system design target parameters
部件 设计目标参数 压力放大
贮箱气体腔内径、初始长度、初始体积;液体腔内径、
初始长度;压力放大比、活塞面积比、活塞摩擦
力、气体腔额定流入质量流量流量
调节器弹簧刚度、阀芯入口腔受力面直径、阀芯出口腔
受力面直径、额定工作阀芯位移、阀门关闭阀芯
位移、阀门额定开度、入口腔关闭压力、出口腔关闭压力燃气
发生器催化剂床床径、床长,粗颗粒催化剂床床长、催化
剂床压降;毛细管内径、毛细管长度、毛细管数
量、毛细管压降;集液腔直径、集液腔长度、集液
腔压降;燃气发生器压降管道 直径、压降 起动药盒 固体药剂质量、起动压力、最低起动压力 表 2 系统设计目标参数结果
Table 2. Design results of system target parameters
部件 设计参数 压降/MPa 压力放大贮箱 气体腔内径/mm 70.0 液体腔内径/mm 60.6 活塞面积比 1.333 气体腔额定流入
质量流量/(g·s-1)0.70 气体腔初始体积/L 0.115 气体腔初始长度/mm 30.0 液体腔初始长度/mm 172.0 压力放大比 1.228 活塞摩擦力/N 2 000 流量调节器 弹簧刚度/(N·m) 4 424 075.1 1.000 0 阀门关闭阀芯位移/mm 1.255 额定工作阀芯位移/mm 1.222 入口腔关闭压力/MPa 8.672 入口腔受力面直径/m 0.010 出口腔受力面直径/m 0.020 阀门额定开度/mm 0.033 出口腔关闭压力/MPa 7.672 燃气发生器 催化剂床床径/cm 3.39 0.4702 粗颗粒催化剂床床长/cm 2.04 毛细管内径/mm 0.5 集液腔直径/m 0.017 催化剂床床长/cm 2.54 毛细管长度/m 0.021 毛细管数量 9 集液腔长度/m 0.002 5 管道 管径1(压力放大贮箱与
流量调节器间)/m0.004 0.002 3 管长1(压力放大贮箱与
流量调节器间)/m0.1 管径2(流量调节器与
燃气发生器间)/m0.004 0.002 3 管长2(流量调节器与
燃气发生器间)/m0.1 管径3(燃气发生器与
压力放大贮箱间)/m0.004 0.097 6 管长3(燃气发生器与
压力放大贮 箱间)/m0.8 管径4(燃气发生器与
外部贮箱间)/m0.006 0.099 2 管长4(燃气发生器与
外部贮箱间)/m1.2 起动药盒 起动压力/MPa 11.27 固体药剂质量/g 2.94 表 3 实例系统最低起动压力
Table 3. Minimum system starting pressure
MPa 参数 pg0_min peq pfeq pdia 数值 2.74 2.06 0.86 0.70 表 4 系统额定工作时和自锁后的压力状态
Table 4. System pressures under rated operating condition and self-lockingMPa
MPa 工作阶段 pi po ptank 额定工作 8.47 7.47 6.90 自锁后 9.55 7.56 7.56 -
[1] PEARSON W E.Demonstration of a combined MMH hot gas pressurization and expulsion subsystem:AIAA-1973-1200[R].Reston:AIAA,1973. [2] WHITEHEAD J C,SWINK D G,TOEWS H G.Pumped hydrazine miniaturized propulsion system:AIAA-1989-2958[R].Reston:AIAA,1989. [3] WHITEHEAD J C.Bipropellant propulsion with reciprocating pumps:AIAA-1993-2121[R].Reston:AIAA,1993. [4] WHITEHEAD J C,PITTENGER L C,COLELLA N J.Design and flight testing of a reciprocating pump fed rocket:AIAA-1994-3031[R].Reston:AIAA,1994. [5] FREI T E,MAYBEE J C,WHITEHEAD J C.Recent test results of a warm gas pumped monopropellant propulsion system:AIAA-1994-3393[R].Reston:AIAA,1994. [6] WHITEHEAD J C.Test results for a reciprocating pump powered by decomposed hydrogen peroxide:AIAA-2001-3839[R].Reston:AIAA,2001. [7] WHITEHEAD J C.Mars ascent propulsion options for small return vehicles:AIAA-1997-2950[R].Reston:AIAA,1997. [8] WHITEHEAD J C,BREWSTER G T.High pressure pumped hydrazine for mars sample return[J].Journal of Spacecraft and Rockets,2000,37(4):532-538. doi: 10.2514/2.3596 [9] WHITEHEAD J C.Performance of a new lightweight reciprocating pump:AIAA-2005-3921[R].Reston:AIAA,2005. [10] MAYBEE J C,KRISME D J.A novel design warm gas pressurization system:AIAA-1998-4014[R].Reston:AIAA,1998. [11] ZOU Y,LI P.Applications of self-pressurization in divert and attitude control system[J].Journal of Rocket Propulsion,2010,36(2):15-19(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201002006.htm邹宇,李平.自增压系统在姿轨控动力系统中的应用[J].火箭推进,2010,36(2):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201002006.htm [12] LI S Y,XIAO M J,LI X J,et al.Scheme study on divert and attitude control engines with piston pump pressurized system[J].Journal of Rocket Propulsion,2012,38(1):12-16(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201201002.htm李淑艳,肖明杰,李晓瑾,等.新型活塞泵增压轨/姿控发动机系统方案研究[J].火箭推进,2012,38(1):12-16. http://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201201002.htm [13] LIU L,LIANG G Z.Optimization selection of regulated pressurization system schemes for liquid attitude and divert propulsion systems[C]//2014 Asia-Pacific International Symposium on Aerospace Technology.Berlin:Springer,2015:1247-1251. [14] ZHOU H S.Design and research of monopropellant liquid rocket engine[M].Beijing:China Aerospace Press,2009(in Chinese).周汉申.单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社,2009. [15] CHENG D X.Machine design handbook:Spring,lifting and transporting part,hardware part[M].Beijing:Chemical Industry Press,2004(in Chinese).成大先.机械设计手册:弹簧·起重运输件·五金件[M].北京:化学工业出版社,2004.