Improvement of airfoil turbulent trailing-edge noise semi-empirical prediction formulation
-
摘要:
改进了传统的翼型湍流边界层尾缘噪声BPM半经验预测公式。传统的BPM半经验湍流边界层尾缘噪声预测公式对高攻角和厚翼型在高频范围的预测结果大于实验结果,通过分析比较传统BPM半经验预测公式和Howe翼型尾缘噪声理论模型发现:这主要是由于传统BPM半经验预测公式对压力面声源噪声辐射高估引起的。因此将压力面声源噪声辐射与吸力面声源噪声辐射的幅值比由原来的边界层位移厚度一次方比值改进为二次方比值,进而得到了改进后的BPM半经验预测公式;使用改进后的BPM半经验预测公式对NACA0012翼型在不同来流不同攻角下的噪声辐射进行了预测比较,发现对于NACA0012翼型,改进后的BPM半经验预测公式具有较高精度;另外也预测了较厚的风力机翼型DU-96-W-180,预测结果明显改善。
Abstract:The traditional BPM semi-empirical prediction airfoil turbulent boundary layer trailing edge noise was improved. The traditional BPM semi-empirical prediction formulation overpredicts the spectra in high frequency range at high angle of attack or for thick airfoil. It is found that it was mainly caused by the overestimation of the noise contribution from pressure side source through the analysis and comparison between the traditional BPM semi-empirical prediction formulation and Howe's trailing-edge noise theoretical model. Then the ratio of noise contribution from suction side and pressure side source is improved to the square power of boundary displacement thickness rather than the one power appeared in the traditional BPM semi-empirical prediction formulation. The improved BPM semi-empirical prediction formulation is employed in the airfoil turbulent boundary layer trailing-edge noise prediction, which shows that better results can be obtained from the improved BPM semi-empirical prediction formulation for NACA0012 airfoil at high angle of attack. The prediction for wind turbine airfoil DU-96-W-180 is improved significantly by improved BPM semi-empirical prediction formulation.
-
表 1 计算工况
Table 1. Computation cases
工况 翼型 U∞/ (m·s-1) Re/106 α/(°) 1 NACA0012 56.0 1.5 0 2 NACA0012 54.8 1.5 4 3 NACA0012 53.0 1.5 6 4 NACA0012 37.7 1.0 0 5 DU-96-W-180 60.0 1.1 4 -
[1] BROOKS T F,POPE D S,MARCOLINI M A.Airfoil self-noise and prediction:NASA-RP-1218[R].Hampton,Virginia:NASA Langley Research Center,1989. [2] YANNICK R,MOREAU S,MAUUEL H,et al.Fan trailing-edge noise prediction using RANS simulations:AIAA-2010-3720[R].Reston:AIAA,2010. [3] ANA G S,TOM H,HOWARD H.Experimental investigation into trailing edge noise sources:AIAA-2006-2476[R].Reston:AIAA,2006. [4] ROBERT G R,MILLER G,GUO Y P,et al.Airframe noise studies-review and future direction:NASA-CR-213767[R].Hampton,Virginia:NASA Langley Research Center,2005. [5] WAGNER S,BAREIB R,GUIDATI G.Wind turbine noise[M].Berlin:Springer,1996:67-80. [6] POWELL A.On the aerodynamic noise of a rigid flat plate moving at zero incidence[J].Journal of the Acoustical Society of America,1959,31(12):1649-1653. doi: 10.1121/1.1907674 [7] FFOWCS WILLIAMS J E,HALL L H.Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane[J].Journal of Fluid Mechanics,1970,40:657-670. doi: 10.1017/S0022112070000368 [8] LIGHTHILL M J.On sound generated aerodynamically:I.General theory[J].Proceedings of the Royal Society of London,Series A:Mathematical and Physical Sciences,1952,211(1107):564-581. doi: 10.1098/rspa.1952.0060 [9] LIGHTHILL M J.On sound generated aerodynamically:II.Turbulence as a source of sound[J].Proceedings of the Royal Society of London,Series A:Mathematical and Physical Sciences,1954,222(1148):1-32. doi: 10.1098/rspa.1954.0049 [10] HAYDEN R E.Noise from interaction of flow with rigid surfaces:A review of current status of prediction techniques:NASA CR-2126[R].Washington,D.C.:NASA,1972. [11] CHASE D M.Noise radiated from an edge in turbulent flow[J].AIAA Journal,1975,13(8):1041-1047. doi: 10.2514/3.60502 [12] CHANDIRAMANI K L.Diffraction of evanescent waves with applications to aerodynamically scattered sound and radiation from unbaffled plates[J].Journal of the Acoustical Society of America,1974,55(1):19-29. doi: 10.1121/1.1919471 [13] CRIGHTON D G.Radiation from vortex filament motion near a half-plane[J].Journal of Fluid Mechanics,1972,51(2):357-362. doi: 10.1017/S0022112072001235 [14] AMIET R K.Noise due to turbulent flow past a trailing edge[J].Journal of Sound and Vibration,1976,47(3):387-393. doi: 10.1016/0022-460X(76)90948-2 [15] HOWE M S.Edge-source acoustic Green's function for an airfoil of arbitrary chord with application to trailing-edge noise[J].Quarterly Journal of Mechanics and Applied Mathematics,2001,54(1):139-155. doi: 10.1093/qjmam/54.1.139 [16] ROGER M,MOREAU S.Broadband self-noise from loaded fan blades[J].AIAA Journal,2004,42(3):536-544. doi: 10.2514/1.9108 [17] WANG M,PARVIZ M.Computation of trailing-edge flow and noise using large-eddy simulation[J].AIAA Journal,2000,38(12):2201-2209. doi: 10.2514/2.895 [18] EWERT R,APPEL C,DIERKE J,et al.RANS/CAA based prediction of NACA0012 broadband trailing edge noise and experimental Validation:AIAA-2009-3269[R].Reston:AIAA, 2009. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201601017.htm [19] KAMRUZZAMAN M,LUTZ T,HERRIG A,et al.RANS based prediction of airfoil trailing edge far field noise:impact of isotropic and anisotropic Turbulence:AIAA-2008-2867[R].Reston:AIAA,2008. [20] ALBARRACIN C A,DOOLAN C J,JONES R F,et al.A RANS-based statistical noise model for trailing edge noise:AIAA-2012-2181[R].Reston:AIAA,2012. [21] 柏宝红,李晓东.一种基于平均流场的翼型尾缘宽频噪声预测方法[J],航空动力学报,2016,31(1):115-123. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201601017.htmBAI B H,LI X D.A RANS-based prediction method for the airfoil broadband trailing edge noise[J].Journal of Aerospace Power,2016,31(1):115-123(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201601017.htm [22] FINK M R.Experimental evaluation of theories for trailing edge and incidence fluctuation noise[J].AIAA Journal,1975,13(11):1472-1477. doi: 10.2514/3.60559 [23] GLEGG S A L,BAXTER S M,GLENDENNING A G.The prediction of broadband noise from wind turbines[J].Journal of Sound and Vibration,1986,118(2):217-239. https://www.researchgate.net/publication/222381851_The_prediction_of_broadband_noise_from_wind_turbines?_sg=eelPggNvztcVcydlCt8SSfOlRWNMgwY-p0FOtJef1nE93T1GvNUkqMfoIAHLI0t_gvs6Oad3fdHzBQOrSteMyQ [24] MORIARTY P.NAFNoise:A program for calculating 2d airfoil noise.Design code[EB/OL].Golden,Colorado:National Wind Technology Center,2003[2016-03-17].https://nwtc.nrel.gov/NAFNoise. [25] GUO Y P.Slat noise modeling and prediction[J].Journal of Sound and Vibration,2012,331(15):3567-3586. doi: 10.1016/j.jsv.2012.03.016 [26] GUO Y P.A component-based model for aircraft landing gear noise prediction[J].Journal of Sound and Vibration,2008,312(4):801-820. https://www.researchgate.net/publication/222147929_A_component-based_model_for_aircraft_landing_gear_noise_prediction_Retracted_article_See_vol_333_pg_4402_2014 [27] GUO Y P.Flap side edge noise modeling and prediction[J].Journal of Sound and Vibration,2013,332(16):3846-3868. doi: 10.1016/j.jsv.2013.02.029 [28] HELLER H H,DOBRZYNSKI W M.Unsteady surface pressure characteristic on aircraft components and far field radiated airframe noise[J].Journal of Aircraft,1978,15(12):809-815. doi: 10.2514/3.58453 [29] HOWE M S.Trailing edge noise at low Mach numbers[J].Journal of Sound and Vibration,1999,225(2):211-238. doi: 10.1006/jsvi.1999.2236 [30] HOWE M S.Trailing edge noise at low mach numbers,Part 2:Attached and separated edge flows[J].Journal of Sound and Vibration,2000,234(5):761-775. doi: 10.1006/jsvi.1999.2861 [31] CHASE D M.Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J].Journal of Sound and Vibration,1980,70(1):29-67. doi: 10.1016/0022-460X(80)90553-2 [32] HERR M,BAHR C,KAMRUZZAMAN M.Workshop category 1:Trailing-edge noise[C]//Proceedings of the AIAA/CEAS Third Workshop on Benchmark Problems for Airframe Noise Computations (BANC-Ⅲ).Reston:AIAA,2014. [33] HERR M,EWERT R,RAUTMANN C.Broadband trailing-edge noise predictions-overview of BANC-Ⅲ results:AIAA-2015-2847[R].Reston:AIAA,2015.