留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于力的电动静液作动器阻抗控制

周国哲 付永领 齐海涛 杨荣荣 范殿梁

周国哲, 付永领, 齐海涛, 等 . 基于力的电动静液作动器阻抗控制[J]. 北京航空航天大学学报, 2017, 43(1): 93-99. doi: 10.13700/j.bh.1001-5965.2016.0094
引用本文: 周国哲, 付永领, 齐海涛, 等 . 基于力的电动静液作动器阻抗控制[J]. 北京航空航天大学学报, 2017, 43(1): 93-99. doi: 10.13700/j.bh.1001-5965.2016.0094
ZHOU Guozhe, FU Yongling, QI Haitao, et al. Force based impedance control of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 93-99. doi: 10.13700/j.bh.1001-5965.2016.0094(in Chinese)
Citation: ZHOU Guozhe, FU Yongling, QI Haitao, et al. Force based impedance control of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 93-99. doi: 10.13700/j.bh.1001-5965.2016.0094(in Chinese)

基于力的电动静液作动器阻抗控制

doi: 10.13700/j.bh.1001-5965.2016.0094
基金项目: 

国家自然科学基金 51505016

详细信息
    作者简介:

    周国哲, 男, 博士研究生。主要研究方向:电液伺服控制

    通讯作者:

    付永领, 男, 博士, 教授, 博士生导师。主要研究方向:新型集成一体化功率电传作动技术。E-mail:fuyongling@126.com

  • 中图分类号: TH137

Force based impedance control of electro-hydrostatic actuator

Funds: 

National Natural Science Foundation of China 51505016

More Information
  • 摘要:

    阻抗控制作为一种柔顺控制方式,能够实现力与位置的协同控制,在作动系统需要与外部环境发生接触的应用中具有一定优势。在集成、高效的电动静液作动器(EHA)上实现基于力的阻抗控制具有良好的应用前景,其中核心问题是EHA力伺服控制器的设计。针对阻抗控制中外部负载特性不确定,EHA部分结构参数时变等问题,采用定量反馈理论(QFT)的方法对力伺服控制器进行设计。在对EHA数学模型及参数进行分析的基础上,通过QFT方法将被控对象的不确定范围与系统性能设计指标相结合,并以定量的方式在Nichols图上形成边界,在使标称对象的开环频率特性曲线满足各边界约束条件的同时完成力伺服控制器的设计。通过不同外部负载条件下的力伺服控制实验以及静、动态阻抗控制实验对EHA的力伺服控制器与阻抗控制系统进行了验证。实验结果表明:通过QFT方法设计得到的力伺服控制器对外部环境具有较强的鲁棒性,从而确保了EHA阻抗控制的成功实现。

     

  • 图 1  EHA控制系统原理图

    Figure 1.  Schematic of EHA control system

    图 2  EHA开环频率响应的不确定性

    Figure 2.  Uncertainty of EHA open-loop frequency response

    图 3  EHA力控制系统方框图

    Figure 3.  EHA force control system block diagram

    图 4  综合边界与系统开环频率响应

    Figure 4.  Integrated bounds and open-loop frequencyresponse of system

    图 5  引入前置滤波器前后系统闭环频率响应

    Figure 5.  Closed-loop frequency responses of systemwith and without pre-filter

    图 6  不同弹性负载刚度下EHA力控制系统阶跃响应

    Figure 6.  Step responses of EHA force control system withvarious elastic load stiffness

    图 7  基于力的阻抗控制原理图

    Figure 7.  Schematic of force based impedance control

    图 8  静态阻抗控制实验结果

    Figure 8.  Static impedance control experiment results

    图 9  动态阻抗控制实验结果

    Figure 9.  Dynamic impedance control experiment results

    表  1  EHA模型定常参数

    Table  1.   Time-invariant parameters of EHA model

    参数数值
    ML/kg12.3
    Tm/s0.05
    Km/(rad·s-1·V-1)25
    Vt/cm3234
    A/mm2633
    Dp/(cm3·r-1)4.9
    下载: 导出CSV

    表  2  EHA模型时变参数

    Table  2.   Time-variant parameters of EHA model

    参数下限值上限值
    βe /(108N·m-2)59
    Kfv/(N·s·m-1)50350
    Ke/(kN·m-1)20200
    下载: 导出CSV
  • [1] HOGAN N.Impedance control:An approach to manipulation,Parts Ⅰ,Ⅱ,Ⅲ[J].Journal of Dynamic Systems,Measurement,and Control,1985,107(1):1-24. doi: 10.1115/1.3140702
    [2] KAZEROONI H.Automated robotic deburring using impedance control[J].Control Systems Magazine,1988,8(1):21-25. doi: 10.1109/37.464
    [3] ERHAN A G,MEHMET A A.The design and control of a therapeutic exercise robot for lower limb rehabilitation:Physiotherabot[J].Mechatronics,2011,21(3):509-522. doi: 10.1016/j.mechatronics.2011.01.005
    [4] RICHARDSON R,BROWN M,BHAKTA B,et al.Design and control of a three degree of freedom pneumatic physiotherapy robot[J].Robotica,2003,21(6):589-604. doi: 10.1017/S0263574703005320
    [5] OTT C,ALBU-SCHAFFER A,KUGI A,et al.On the passivity-based impedance control of flexible joint robots[J].IEEE Transactions on Robotics,2008,24(2):416-429. doi: 10.1109/TRO.2008.915438
    [6] IRAWAN A,NONAMI K.Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain[J].Journal of Field Robotics,2011,28(5):690-713. doi: 10.1002/rob.20404
    [7] HA Q P,NGUYEN Q H,RYE D C,et al.Impedance control of a hydraulically actuated robotic excavator[J].Automation in Construction,2000,9(5):421-435. http://www.academia.edu/15381157/Impedance_control_of_a_hydraulically_actuated_robotic_excavator
    [8] TAFAZOLI S,SALCUDEAN S E,HASHTRUDI-ZAAD K,et al.Impedance control of a teleoperated excavator[J].IEEE Transactions on Control Systems Technology,2002,10(3):355-367. doi: 10.1109/87.998021
    [9] FATEH M M,ALAVI S S.Impedance control of an active suspension system[J].Mechatronics,2009,19(1):134-140. doi: 10.1016/j.mechatronics.2008.05.005
    [10] FATEH M M.Robust impedance control of a hydraulic suspension system[J].International Journal of Robust and Nonlinear Control,2010,20(8):858-872. https://www.researchgate.net/publication/229917780_Robust_impedance_control_of_a_hydraulic_suspension_system
    [11] FATEH M M,ZIRKOHI M M.Adaptive impedance control of a hydraulic suspension system using particle swarm optimization[J].Vehicle System Dynamics,2011,49(12):1951-1965. doi: 10.1080/00423114.2011.564289
    [12] KAMINAGA H,ONO J,NAKASHIMA Y,et al.Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots[C]//Robotics and Automation.Piscataway,NJ:IEEE Press,2009:1577-1582.
    [13] KAMINAGA H, AMARI T,KATAYAMA Y,et al.Backdrivability analysis of electro-hydrostatic actuator and series dissipative actuation model[C]//Robotics and Automation.Piscataway,NJ:IEEE Press,2010:4204-4211.
    [14] KAMINAGA H,AMARI T,NIWA Y,et al.Development of knee power assist using backdrivable electro-hydrostatic actuator[C]//Intelligent Robots and Systems.Piscataway,NJ:IEEE Press,2010:5517-5524.
    [15] YANIV O.Quantitative feedback design of linear and nonlinear control systems[M].Massachusetts:Kluwer Academic Publishers,1999:17-18.
    [16] 马纪明,付永领,高波.基于定量反馈理论的EHA控制器设计[J].北京航空航天大学学报,2006,32(5):553-557. http://bhxb.buaa.edu.cn/CN/abstract/abstract9886.shtml

    MA J M,FU Y L,GAO B.EHA controller design based quantitative feedback theory[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(5):553-557(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9886.shtml
    [17] 郭彦青,付永领,张朋,等.电液负载模拟器摩擦参数辨识及补偿[J].北京航空航天大学学报,2014,40(9):1256-1262. http://bhxb.buaa.edu.cn/CN/abstract/abstract13029.shtml

    GUO Y Q,FU Y L,ZHANG P,et al.Friction parameter identification and compensation for electro-hydraulic load simulator[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(9):1256-1262(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13029.shtml
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  975
  • HTML全文浏览量:  98
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 录用日期:  2016-04-08
  • 网络出版日期:  2017-01-20

目录

    /

    返回文章
    返回
    常见问答