-
摘要:
针对介质跨越航行器控制困难的问题,提出一种空中控制水下非控的单一控制策略;为了分析航行器非控状态下斜入水运动的规律,构建了航行器低速入水动力学模型,并分别使用数值仿真方法和理论模型求解方法进行同一条件下的航行体入水运动仿真,通过对2种方法的仿真结果对比验证本文所构建航行体斜入水动力学模型的正确性。利用构建的入水动力学模型,分别对不同初始速度、角度、攻角条件下的入水过程进行了运动状态仿真并分析,得出了航行体在入水运动过程中的姿态位置变化规律。此入水规律将指导介质跨越航行器后续的水下航行、进而出水的一系列研究。
Abstract:This paper proposes a single control strategy to solve the problem of difficult transmedia vehicle control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle obliquely water-entry at low speed is founded to analyze the motion characteristics. Two methods are used to simulate the vehicle's water-entry in the same condition:numerical simulation method and theoretical model calculation method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The water-entry movement in the conditions of different initial velocities, different angles, and different attack angles is simulated by this hydrodynamic model and the simulation is analyzed. And the change rule of the vehicle's gestures and position when water-entry is obtained by analysis. This water-entry rule will guide a series of follow-up researches, such as underwater navigation and water-exit process.
-
Key words:
- water-entry movement /
- dynamic model /
- theoretical model calculation /
- ballistic trajectory /
- gesture
-
-
[1] EASTGATE J, GODDARD R.Submersible aircraft concept design study[C]//11th International Conference on Fast Sea Transportation, FAST 2011.Alexandria:American Society of Naval Engineers, 2011:813-820. [2] KATHRYN W.Submersible aircraft concept design study-Amendment1:NSWCCD-CISD-2011/015[R].Carderock, MD:Naval Surface Warfare Center Carderock Division, 2011. [3] 严忠汉.试论鱼雷入水问题[J].中国造船, 2002, 43(3):88-93.YAN Z H.A brief neview of water-entry problems for torpedo[J].Ship Building of China, 2002, 43(3):88-93(in Chinese). [4] WAUGH J G, STUBSTAD G W.Hydroballistics modeling:AD A 007529[R].Washington, D.C.:NASA, 1975. [5] MAY A.Water-entry & cavity running behavior of missiles:AD A 020429[R].Washington, D.C.:NASA, 1975. [6] 何春涛, 王聪, 何乾坤, 等.圆柱体低俗入水空泡试验研究[J].物理学报, 2012, 61(13):134701. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201213043.htmHE C T, WANG C, HE Q K, et al.Low speed water-entry of cylindrical projictile[J].Acta Physica Sinica, 2012, 61(13):134701(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201213043.htm [7] 何春涛, 王聪, 魏英杰, 等.圆柱体垂直入水空泡形态试验[J].北京航空航天大学学报, 2012, 38(11):1542-1546. http://bhxb.buaa.edu.cn/CN/abstract/abstract12461.shtmlHE C T, WANG C, WEI Y J, et al.Vertical water entry cavity of cylinder body[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12461.shtml [8] 马庆鹏, 何春涛, 王聪, 等.球体垂直入水空泡实验研究[J].爆炸与冲击, 2014, 34(2):174-180. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201402008.htmMA Q P, HE C T, WANG C, et al.Experiment investigation on vertical water-entry cavity of sphere[J].Explosion and Shock Waves, 2014, 34(2):174-180(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201402008.htm [9] 胡青青.不同倾角下钝体入水后的超空泡流动的实验观察及数值计算[D].杭州:浙江理工大学, 2014:32-35. http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226386.htmHU Q Q.Experimental observation and numerical calculation of supercavity flow of blunt body under different inlination angle into the water[D].Hangzhou:Zhejiang Sci-Tech University, 2014:32-35(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226386.htm [10] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZW201419138.htmZHANG W, GUO Z T, XIAO X K, et al.Experimental investigations on behaviors of projectile high-speed water entry[J].Explosion and Shock Waves, 2011, 31(6):579-584(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KJZW201419138.htm [11] 顾建农, 张志宏, 王冲, 等.旋转弹头水平入水空泡及弹道实验研究[J].兵工学报, 2012, 33(5):540-544. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201205005.htmGU J N, ZHANG Z H, WANG C, et al.Experimental research for cavity and ballistics of a rotating bullet entraining water levelly[J].Acta Armamentarii, 2012, 33(5):540-544(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201205005.htm [12] 陈宇翔, 郜冶, 刘乾坤.应用VOF方法的水平圆柱入水数值模拟[J].哈尔滨工程大学学报, 2011, 32(11):1439-1442. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201111007.htmCHEN Y X, GAO Y, LIU Q K.Numerical simulation of water-entry in a horizontal circular cylinder using the volume of fluid (VOF) method[J].Journal of Harbin Engineering University, 2011, 32(11):1439-1442(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201111007.htm [13] 何春涛, 王聪, 闵景新, 等.回转体匀速垂直入水早期空泡数值模拟研究[J].工程力学, 2012, 29(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204038.htmHE C T, WANG C, MIN J X, et al.Numerical simulation of early air-cavity of cylinder cone with vertical water-entry[J].Engineering Mechanics, 2012, 29(4):237-243(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204038.htm [14] 魏照宇, 石秀华, 王银涛, 等.水下航行器高速斜入水冲击的探索仿真研究[J].西北工业大学学报, 2010, 28(5):718-723. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201005018.htmWEI Z Y, SHI X H, WANG Y T, et al.Exploring high-speed oblique water entry impact of an underwater vehicle[J].Journal of Northwestern Polytechnical University, 2010, 28(5):718-723(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201005018.htm [15] 王永虎, 石秀华.空投鱼雷斜入水初始弹道数值分析[J].弹道学报, 2012, 24(2):92-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201202023.htmWANG Y H, SHI X H.Numerical analysis for initial hydroballistics of airborne missile during oblique water-entry impact[J].Journal of Ballistics, 2012, 24(2):92-95(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201202023.htm [16] PARK M S, JUNG Y R.Numerical study of impact force and ricochet behavior of high speed water-entry bodies[J].Computers & Fluids, 2003, 32(7):939-951. http://www.doc88.com/p-391307060593.html [17] 严卫生.鱼雷航行力学[M].西安:西北工业大学出版社, 2005:26.YAN W S.Torpedo mechanics[M].Xi'an:Northwestern Polytechnical University Press, 2005:26(in Chinese). [18] 廖剑晖, 由小川, 吕海波, 等.发展时变附加质量方法模拟飞行器出水过程[J].工程力学, 2012, 29(4):202-209. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204033.htmLIAO J H, YOU X C, LV H B, et al.Development of a time-varying added mass method in the simulations of the water-exit process of underwater vehicles[J].Engineering Mechanics, 2012, 29(4):202-209(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204033.htm [19] 罗格维诺维奇·T·B.自由边界流动的水动力学[M].施红辉, 译.上海:上海交通大学出版社, 2012:129-131.ЛОГВИНООВЧ Г В.Hydrodynamics of free-boundary flows[M].SHI H H, translated.Shanghai:Shanghai Jiao Tong University Press, 2012:129-131(in Chinese). [20] WILSON M B, KELLEY T R.Low froude number hydrodynamic performance of a flat plate hydrofoil[J].Drag Forces, 1976:77. https://www.researchgate.net/publication/252773764_Low_Froude_number_hydrodynamic_performance_of_a_flat_plate_hydrofoil [21] 刘曜.波浪对运载器出水姿态角的影响[J].舰船科学技术, 2005, 27(3):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200503009.htmLIU Y.Wave effect on a submerged missile capsule traveling near-surface[J].Ship Science and Technology, 2005, 27(3):32-34(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200503009.htm