留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像增强的无人机侦察图像去雾方法

黄宇晴 丁文锐 李红光

黄宇晴, 丁文锐, 李红光等 . 基于图像增强的无人机侦察图像去雾方法[J]. 北京航空航天大学学报, 2017, 43(3): 592-601. doi: 10.13700/j.bh.1001-5965.2016.0169
引用本文: 黄宇晴, 丁文锐, 李红光等 . 基于图像增强的无人机侦察图像去雾方法[J]. 北京航空航天大学学报, 2017, 43(3): 592-601. doi: 10.13700/j.bh.1001-5965.2016.0169
HUANG Yuqing, DING Wenrui, LI Hongguanget al. Haze removal method for UAV reconnaissance images based on image enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 592-601. doi: 10.13700/j.bh.1001-5965.2016.0169(in Chinese)
Citation: HUANG Yuqing, DING Wenrui, LI Hongguanget al. Haze removal method for UAV reconnaissance images based on image enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 592-601. doi: 10.13700/j.bh.1001-5965.2016.0169(in Chinese)

基于图像增强的无人机侦察图像去雾方法

doi: 10.13700/j.bh.1001-5965.2016.0169
基金项目: 

国家自然科学基金 61601014

详细信息
    作者简介:

    黄宇晴, 女, 硕士研究生。主要研究方向:图像处理

    李红光, 男, 博士, 工程师。主要研究方向:图像处理

    通讯作者:

    李红光, E-mail:lihongguang@buaa.edu.cn

  • 中图分类号: TP391

Haze removal method for UAV reconnaissance images based on image enhancement

Funds: 

National Natural Science Foundation of China 61601014

More Information
  • 摘要:

    针对无人机(UAV)雾霾天气下的侦察图像,并考虑无人机自身特性,提出了一种新的基于图像增强的无人机侦察图像去雾方法。该方法从图像处理的角度,通过对图像分别进行白平衡处理和对比度增强处理,基于图像融合和自动色阶处理,最终得到复原图像。选取无人机侦察图像进行去雾,并从主观和客观对实验结果进行评价,本方法得到的去雾图像的图像评价指标均有明显提高;同时与其他典型的去雾方法相比,综合评价指标提升,证明本方法可以得到良好的去雾效果。

     

  • 图 1  本文去雾方法流程图

    Figure 1.  Proposed dehazing method flowchart

    图 2  大气散射模型示意图

    Figure 2.  Schematic diagram of atmospheric scattering model

    图 3  自动色阶算法流程图

    Figure 3.  Auto levels algorithm flowchart

    图 4  不同方法的去雾效果

    Figure 4.  Dehazing results of different methods

    图 5  综合评价指标比较

    Figure 5.  Comparison of comprehensive evaluation index

    表  1  图像融合权重对应雾浓度级别

    Table  1.   Image fusion weights and their corresponding grades of haze concentration

    雾气浓度级别 对比度权重 白平衡权重
    0 0 1
    1 0.2 0.8
    2 0.4 0.6
    3 0.6 0.4
    4 0.8 0.2
    下载: 导出CSV

    表  2  去雾前后的标准差和信息熵

    Table  2.   Standard deviation and information entropy before and after dehazing

    序号 标准差 信息熵
    原图 去雾后 原图 去雾后
    1 21.817 700 55.956 15 4.114 371 5.231 381
    2 23.575 430 53.351 33 3.709 058 4.910 504
    3 9.018 065 43.797 79 3.350 642 5.034 718
    4 6.289 762 30.208 87 3.024 568 4.867 457
    5 16.996 810 36.074 45 4.505 224 5.264 960
    6 10.341 110 23.898 56 3.451 581 4.779 376
    7 18.149 810 41.873 90 4.587 965 5.440 413
    下载: 导出CSV

    表  3  去雾前后的CNI和CCI

    Table  3.   CNI and CCI before and after dehazing

    序号 CNI CCI
    原图 去雾后 原图 去雾后
    1 0.458 457 0.564 170 65.952 55 167.536 70
    2 0.545 394 0.624 008 100.782 20 157.108 10
    3 0.463 714 0.597 543 45.798 24 162.026 30
    4 0.450 407 0.522 387 38.751 14 136.424 70
    5 0.435 621 0.520 872 23.266 67 48.885 40
    6 0.422 680 0.417 078 12.794 68 27.341 50
    7 0.468 173 0.492 878 26.322 86 40.960 57
    下载: 导出CSV

    表  4  不同方法的综合评价指标比较

    Table  4.   Comparison of comprehensive evaluation index among different methods

    序号 原图 (a) 自适应直方图均衡 (b) 自适应色阶对比度 (c) 多尺度Retinex (d) 均值滤波 (e) 高斯滤波 (f) 暗通道先验 (g) 本文方法 (h)
    1 1.001 3 1.935 004 2.522 596 2.076 970 2.174 849 2.384 549 2.831 008 2.542 759
    2 1.096 2 2.180 398 3.255 074 2.170 184 1.738 967 2.488 135 2.566 417 2.636 486
    3 0.398 5 1.167 745 1.740 431 2.200 087 0.486 920 1.058 386 2.026 381 2.268 815
    4 0.171 5 0.618 922 1.463 787 2.015 525 0.242 398 0.994 793 2.240 572 1.948 523
    5 0.931 4 1.983 790 2.130 797 2.185 008 1.619 569 1.962 495 2.030 415 2.020 827
    6 0.319 6 1.073 086 1.533 132 2.008 388 0.676 075 0.858 428 0.910 497 1.157 127
    7 1.050 4 2.015 479 2.038 903 2.097 325 2.669 215 2.004 094 2.214 031 2.440 271
    下载: 导出CSV
  • [1] FITZGERALD J A S J.An alternative algorithm for adaptive histogram equalization[J].Graphical Models & Image Processing, 1996, 58(2):180-185.
    [2] REZA A M.Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J].Journal of VLSI Signal Processing Systems, 2004, 38(1):35-44. doi: 10.1023/B:VLSI.0000028532.53893.82
    [3] 翟艺书, 刘晓鸣, 涂雅瑗, 等.一种改进雾天降质图像的清晰化算法[J].大连海事大学学报, 2007, 33(3):55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200703011.htm

    ZHAI Y S, LIU X M, TU Y Y, et al.An improved fog-degraded image clearness algorithm[J].Journal of Dalian Maritime University, 2007, 33(3):55-58(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200703011.htm
    [4] SEOW M J, ASARI V K.Ratio rule and homomorphic filter for enhancement of digital colour image[J].Neurocomputing, 2006, 69(7-9):954-958. doi: 10.1016/j.neucom.2005.07.003
    [5] RUSSO R.An image enhancement technique combining sharpening and noise reduction[J].IEEE Transactions on Instrumentation & Measurement, 2002, 51(4):824-828. https://www.researchgate.net/publication/220409046_An_image_enhancement_technique_combining_sharpening_and_noise_reduction
    [6] ZHOU J, ZHOU F.Single image dehazing motivated by Retinex theory[C]//2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA).Piscataway, NJ:IEEE Press, 2013:243-247.
    [7] ANSIA S, ASWATHY A L.Single image haze removal using white balancing and saliency map[J].Procedia Computer Science, 2015, 46:12-19. doi: 10.1016/j.procs.2015.01.042
    [8] SUN Y B, XIAO L, WEI Z H, et al.Method of defogging image of outdoor scenes based on PDE[J].Journal of System Simulation, 2007, 19(16):3739-3744.
    [9] ZHAI Y S, LIU X M, TU Y Y.Contrast enhancement algorithm for fog-degraded image based on fuzzy logic[J].Computer Applications, 2008, 28(3):662-664. doi: 10.3724/SP.J.1087.2008.00662
    [10] OAKLEY J P.Improving image quality in poor visibility conditions using a physical model for contrast degradation[J].IEEE Transactions on Image Processing, 1998, 7(2):167-179. doi: 10.1109/83.660994
    [11] NARASIMHAN S G, NAYAR S K.Chromatic framework for vision in bad weather[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2002:598-605.
    [12] NARASIMHAN S G, NAYAR S K.Vision and the atmosphere[J].International Journal of Computer Vision, 2002, 48(3):233-254. doi: 10.1023/A:1016328200723
    [13] KOPF J, NEUBERT B, CHEN B, et al.Deep photo:Model-based photograph enhancement and viewing[J].ACM Transactions on Graphics (TOG), 2008, 27(5):32-39.
    [14] TAN R T.Visibility in bad weather from a single image[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008, CVPR 2008.Piscataway, NJ:IEEE Press, 2008:1-8.
    [15] FATTAL R.Single image dehazing[J].ACM Transactions on Graphics (TOG).New York:ACM, 2008, 27(3):1-9.
    [16] HE K, SUN J, TANG X.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353. doi: 10.1109/TPAMI.2010.168
    [17] LIU Q, CHEN M Y, ZHOU D H.Single image haze removal via depth-based contrast stretching transform[J].Science China Information Sciences, 2014, 58(1):1-17. https://www.researchgate.net/publication/271917786_Single_image_haze_removal_via_depth-based_contrast_stretching_transform
    [18] WENG C C, CHEN H, FUH C S.A novel automatic white balance method for digital still cameras[J].Images & Recognition, 2006, 4(12):3801-3804.
    [19] KIM J H, JANG W D, SIM J Y, et al.Optimized contrast enhancement for real-time image and video dehazing[J].Journal of Visual Communication & Image Representation, 2013, 24(3):410-425.
    [20] MCCARTNEY E J.Optics of the atmosphere:Scattering by molecules and particles[J].Wiley, 1976, 14(7):698-699. https://www.researchgate.net/publication/259942105_Optics_of_the_Atmosphere_-_Scattering_by_Molecules_and_Particles
    [21] PELI E.Contrast in complex images[J].Journal of the Optical Society of America A Optics & Image Science, 1990, 7(10):2032-2040. https://www.researchgate.net/publication/20925175_Contrast_in_complex_images
    [22] ANCUTI C, ANCUTI C O, HABER T, et al.Enhancing underwater images and videos by fusion[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ:IEEE Press, 2012:81-88.
    [23] GUO F, TANG J, CAI Z X.Single image defogging based on fusion strategy[J].Journal on Communications, 2014, 35(7):199-207. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TXXB201407024.htm
    [24] FANG S, DENG R, CAO Y, et al.Effective single underwater image enhancement by fusion[J].Journal of Computers, 2013, 8(4):904-911. https://www.researchgate.net/publication/276240250_Effective_Single_Underwater_Image_Enhancement_by_Fusion
    [25] ALSABTI K, RANKA S, SINGH V.An efficient k-means clustering algorithm[J/OL]//Electrical Engineering and Computer Science, 1997:43.http://surface.syr.edu/eecs/43.
    [26] CHOI D H, JANG I H, MI H K, et al.Color image enhancement using single-scale retinex based on an improved image formation model[C]//6th European Signal Processing Conference, EUSIPCO 2008, 2008:1-5.
    [27] QIN X J, WANG H L, DU Y C, et al.Structured light image enhancement algorithm based on retinex in HSV color space[J].Journal of Computer-Aided Design & Computer Graphics, 2013, 25(4):488-493. https://www.researchgate.net/publication/286978621_Structured_light_image_enhancement_algorithm_based_on_retinex_in_HSV_color_space
    [28] DING J B.Proficient in photoshop CS Chinese version[M].Beijing:Tsinghua University Press, 2004:55-60.
    [29] 刘信. 基于FPGA水下图像像质增强实时化研究[D]. 大连: 大连海事大学, 2013: 10-12.

    LIU X.The research of underwater image quality real-time enhancenment based on FPGA[D].Dalian:Dalian Maritime University, 2013:10-12(in Chinese).
    [30] GUO F, CAI Z X.Objective assessment method for the clearness effect of image defogging algorithm[J].Acta Automatica Sinica, 2012, 38(9):1410-1419.. doi: 10.3724/SP.J.1004.2012.01410
    [31] Image Shop.Image enhancement of local adaptive auto tone/contrast[EB/OL].(2013-10-30)[2015-07-14].http://www.cnblogs.com/Imageshop/p/3395968.html.
    [32] LIU Q, CHEN M, ZHOU D.Fast haze removal from a single image[C]//Control and Decision Conference (CCDC).Piscataway, NJ:IEEE Press, 2013:3780-3785.
    [33] HANUMANTHARAJU M C, RAVISHANKAR M, RAMESHBABU D R.Natural color image enhancement based on modified multiscale retinex algorithm and performance evaluation using wavelet energy[M]//THAMPI S M, ABRAHAM A, PAL S K.Recent Advances in Intelligent Informatics.Berlin:Springer, 2014:83-92.
    [34] YENDRIKHOVSKI S N, BLOMMAERT F J J, DE RIDDER H. Perceptually optimal color reproduction[C]//Proceedings of Human Vision and Electronic Imaging Ⅲ. Bellingham, WA:SPIE, 1998:274-281.
    [35] 李青, 郑南宁, 张雪涛, 等.车载摄像机的一种简易标定方法[J].机器人, 2003, 25(s1):626-630. http://www.cqvip.com/QK/90986X/2003z1/1000351647.html

    LI Q, ZHENG N N, ZHANG X T, et al.A simple calibration approach for camera on-based vehicle[J].Robot, 2003, 25(s1):626-630. http://www.cqvip.com/QK/90986X/2003z1/1000351647.html
    [36] JOURLIN M, PINOLI J C.Logarithmic image processing:The mathematical and physical framework for the representation and processing of transmitted images[J].Advances in Imaging and Electron Physics, 2001, 115(1):129-196.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  58
  • PDF下载量:  906
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 录用日期:  2016-04-29
  • 网络出版日期:  2017-03-20

目录

    /

    返回文章
    返回
    常见问答