留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ML背景参数估计的CDKF-CPHD多目标跟踪算法

马天力 王新民 曹宇燕 张阳

马天力, 王新民, 曹宇燕, 等 . 基于ML背景参数估计的CDKF-CPHD多目标跟踪算法[J]. 北京航空航天大学学报, 2017, 43(3): 516-523. doi: 10.13700/j.bh.1001-5965.2016.0189
引用本文: 马天力, 王新民, 曹宇燕, 等 . 基于ML背景参数估计的CDKF-CPHD多目标跟踪算法[J]. 北京航空航天大学学报, 2017, 43(3): 516-523. doi: 10.13700/j.bh.1001-5965.2016.0189
MA Tianli, WANG Xinmin, CAO Yuyan, et al. A CDKF-CPHD multi-target tracking algorithm based on ML background parameter estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 516-523. doi: 10.13700/j.bh.1001-5965.2016.0189(in Chinese)
Citation: MA Tianli, WANG Xinmin, CAO Yuyan, et al. A CDKF-CPHD multi-target tracking algorithm based on ML background parameter estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 516-523. doi: 10.13700/j.bh.1001-5965.2016.0189(in Chinese)

基于ML背景参数估计的CDKF-CPHD多目标跟踪算法

doi: 10.13700/j.bh.1001-5965.2016.0189
基金项目: 

航空科学基金 20152853029

详细信息
    作者简介:

    马天力,男,博士研究生。主要研究方向:多目标跟踪、信息融合、信号处理

    王新民,男,博士,教授,博士生导师。主要研究方向:鲁棒控制理论、非线性控制理论、参数优化理论与方法、故障诊断与自修复

    通讯作者:

    王新民, E-mail:wxmin@nwpu.edu.cn

  • 中图分类号: TP273

A CDKF-CPHD multi-target tracking algorithm based on ML background parameter estimation

Funds: 

Aeronautical Science Foundation of China 20152853029

  • 摘要:

    针对低信杂比环境下的多机动目标跟踪问题,提出了一种基于极大似然(ML)背景参数估计的中心差分卡尔曼-势概率假设密度滤波(BE-CDKF-CPHD)算法。算法采用ML法实时估计重尾分布模型参数,计算检测概率和虚警概率。运用极大似然-恒虚警(ML-CFAR)算法对信号进行处理, 提取有效量测值, 将幅值似然函数与势概率假设密度滤波器(CPHD)中的目标位置似然函数相结合,通过中心差分法递归更新得到后验均值与协方差,达到对多机动目标进行跟踪的目的。仿真结果表明,在低信杂比环境中,所提算法提高了跟踪精度与目标数目估计准确度。

     

  • 图 1  目标运动轨迹

    Figure 1.  Target motion trajectories

    图 2  不同信杂比下的OSPA距离比较

    Figure 2.  Comparison of OSPA distance under different signal-to-clutter ratios

    图 3  3种算法的OSPA距离比较

    Figure 3.  Comparison of OSPA distance for three algorithms

    图 4  3种算法的目标数估计与真实目标数的比较

    Figure 4.  Comparison of true and estimated target numbers for three algorithms

    表  1  目标运动参数

    Table  1.   Target motion parameters

    目标 初始 (结束) 时刻/s 初始位置/m 初始速度/(m·s-1)
    1 2(40) (61, 30) (-1, 1)
    2 12(40) (64, 27) (-1.5, -1.5)
    3 12(50) (64, 30) (1, 1.5)
    下载: 导出CSV

    表  2  仿真环境

    Table  2.   Simulation environment

    情况 ν b δt SCR/dB
    1 2 0.5 2.5 10
    2 2 0.1 1 20
    3 1 0.1 20 30
    下载: 导出CSV
  • [1] STONE L D, STREIT R L, CORWIN T L, et al.Bayesian multiple target tracking[M].2nd ed.London:Artech House, 2013:1-5.
    [2] MAHLER R P S.Statistical multisource-multitarget information fusion[M].London:Artech House, 2007:5-13.
    [3] YIN J J, ZHANG J Q, ZHUANG Z S.Gaussian sum PHD filtering algorithm for nonlinear non-Gaussian models[J].Chinese Journal of Aeronautics, 2008, 21(4):341-351. doi: 10.1016/S1000-9361(08)60045-X
    [4] VO B N, SINGH S, DOUCET A.Sequential Monte Carlo methods for multitarget filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1224-1245. doi: 10.1109/TAES.2005.1561884
    [5] VO B N, MA W K.The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing, 2006, 54(11):4091-4104. doi: 10.1109/TSP.2006.881190
    [6] CLARK D, VO B T, VO B N.Gaussian particle implementations of probability hypothesis density filters[C]//Proceedings of IEEE Aerospace Conference.Piscataway, NJ:IEEE Press, 2007:1-11.
    [7] 陈里铭, 陈喆, 殷福亮.基于中心差分卡尔曼-概率假设密度滤波的多目标跟踪方法[J].控制与决策, 2013, 28(1):36-42. http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201301006.htm

    CHEN L M, CHEN Z, YIN F L.Central difference Kalman-probability hypothesis density filter for multi-target tracking[J].Control and Decision, 2013, 28(1):36-42(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201301006.htm
    [8] 章飞, 周杏鹏, 陈小惠.基于幅值信息的联合概率数据关联粒子滤波算法[J].系统工程与电子技术, 2011, 33(2):453-457. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201102045.htm

    ZHANG F, ZHOU X P, CHEN X H.Joint probabilistic data association particle filter algorithm based on amplitude information title[J].Systems Engineering and Electronics, 2011, 33(2):453-457(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201102045.htm
    [9] LERRO D, BAR-SHALOM Y.Interacting multiple model tracking with target amplitude feature[J].IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2):494-509. doi: 10.1109/7.210086
    [10] BAE S H, KIM D Y, YOON J H, et al.Automated multi-target tracking with kinematic and non-kinematic information[J].IET Radar Sonar Navigation, 2012, 6(4):272-281. doi: 10.1049/iet-rsn.2011.0154
    [11] CLARK D, RISTIC B, VO B N.PHD filtering with target amplitude feature[C]//Proceedings of the 11th International Conference on Information Fusion, FUSION 2008.Piscataway, NJ:IEEE Press, 2008:1-7.
    [12] QIU C, ZHANG Z, LU H, et al.Amplitude-aided CPHD filter for multitarget tracking in infrared images[J].Progress in Electromagnetics Research B, 2014, 61(1):211-224. https://www.researchgate.net/publication/273291606_Amplitude-aided_CPHD_filter_for_multitarget_tracking_in_infrared_images
    [13] ABRAHAM D.Choosing a non-Rayleigh reverberation model[C]//Proceedings of the OCEANS '99 MTS/IEEE-Riding the Crest into the 21st Century.Piscataway, NJ:IEEE Press, 1999, 1:284-288.
    [14] WARD K D, WATTS S, TOUGH R J A.Sea clutter:Scattering, the K distribution and radar performance[M].2nd ed.London:IET, 2013:375-389.
    [15] BREKKE E, HALLINGSTAD O, GLATTETRE J.Tracking small targets in heavy-tailed clutter using amplitude information[J].IEEE Journal of Oceanic Engineering, 2010, 35(2):314-329. doi: 10.1109/JOE.2010.2044670
    [16] 杨谋存, 聂宏.三参数Weibull分布参数的极大似然估计数值解法[J].南京航空航天大学学报, 2007, 39(1):22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200701004.htm

    YANG M C, NIE H.Advanced algorithm for maximum likelihood estimation of three parameter Weibull distribution[J].Journal of Nanjing University of Aeronautics and Astronautics, 2007, 39(1):22-25(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200701004.htm
    [17] RICHARDS M A.Fundamentals of radar signal processing[M].New York:Tata McGraw-Hill Education, 2005:347-382.
    [18] RAVID R, LEVANON N.Maximum-likelihood CFAR for Weibull background[J].IEE Proceedings, Part F:Radar and Signal Processing, 1992, 139(3):256-264. doi: 10.1049/ip-f-2.1992.0033
    [19] NØRGAARD M, POULSEN N K, RAVN O.New developments in state estimation for nonlinear systems[J].Automatica, 2000, 36(11):1627-1638. doi: 10.1016/S0005-1098(00)00089-3
    [20] BEARD M, VO B T, VO B N, et al.Gaussian mixture PHD and CPHD filtering with partially uniform target birth[C]//International Conference on Information Fusion.Piscataway, NJ:IEEE Press, 2012:535-541.
    [21] SCHUHMACHER D, VO B T, VO B N.A consistent metric for performance evaluation of multi-object filters[J].IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457. doi: 10.1109/TSP.2008.920469
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  162
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-10
  • 录用日期:  2016-06-12
  • 网络出版日期:  2017-03-20

目录

    /

    返回文章
    返回
    常见问答