留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含局部缝隙与重叠特征的Mindlin板等几何分析

赵罡 杜孝孝 王伟

赵罡, 杜孝孝, 王伟等 . 含局部缝隙与重叠特征的Mindlin板等几何分析[J]. 北京航空航天大学学报, 2017, 43(3): 432-440. doi: 10.13700/j.bh.1001-5965.2016.0221
引用本文: 赵罡, 杜孝孝, 王伟等 . 含局部缝隙与重叠特征的Mindlin板等几何分析[J]. 北京航空航天大学学报, 2017, 43(3): 432-440. doi: 10.13700/j.bh.1001-5965.2016.0221
ZHAO Gang, DU Xiaoxiao, WANG Weiet al. Isogeometric analysis of Mindlin plate with local gap and overlapping feature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 432-440. doi: 10.13700/j.bh.1001-5965.2016.0221(in Chinese)
Citation: ZHAO Gang, DU Xiaoxiao, WANG Weiet al. Isogeometric analysis of Mindlin plate with local gap and overlapping feature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 432-440. doi: 10.13700/j.bh.1001-5965.2016.0221(in Chinese)

含局部缝隙与重叠特征的Mindlin板等几何分析

doi: 10.13700/j.bh.1001-5965.2016.0221
基金项目: 

国家自然科学基金 51305016

国家自然科学基金 61572056

2013年北京市支持中央高校共建项目 29201437

详细信息
    作者简介:

    赵罡, 男, 博士, 教授, 博士生导师。主要研究方向:虚拟现实技术、飞行器数字化装配、曲面造型新方法及其在数控加工中应用等

    杜孝孝, 男, 博士研究生。主要研究方向:CAD/CAE、等几何分析

    王伟, 男, 博士, 讲师。主要研究方向:CAD/CAE、等几何分析、工程结构优化

    通讯作者:

    王伟, E-mail:jrrt@buaa.edu.cn

  • 中图分类号: TP391.9;O343.2

Isogeometric analysis of Mindlin plate with local gap and overlapping feature

Funds: 

National Natural Science Foundation of China 51305016

National Natural Science Foundation of China 61572056

Young Talent Project for Central Universities in Beijing 2013 29201437

More Information
  • 摘要:

    等几何分析(IGA)中非均匀有理B样条(NURBS)被同时用作计算机辅助设计(CAD)中的建模工具以及有限元分析(FEA)中的逼近函数。NURBS模型中常见的缝隙和重叠问题使得分析变得困难。基于Mindlin板理论,对含有缝隙与重叠部分的NURBS模型进行等几何分析,采用Nitsche方法处理模型交界面上的非协调问题,并通过标准数值仿真算例的计算结果与解析解对比验证方法的可行性。研究结果表明:基于Nitsche的等几何方法可以用来对含局部缝隙与重叠特征的非协调Mindlin板模型进行分析;NURBS次数越高,等几何分析计算结果越精确,并且收敛速度越快。

     

  • 图 1  2-域问题示意图

    Figure 1.  Schematic diagram of problem domain with two parts

    图 2  Mindlin板模型及其坐标系统

    Figure 2.  Model and coordinate system of a Mindlin plate

    图 3  交界线Γ*1Γ*2上的高斯点映射

    Figure 3.  Mapping of Gauss points from interface Γ*1 to Γ*2

    图 4  求解整体刚度矩阵K程序流程图

    Figure 4.  Program flowchart of solving global stiffness matrix K

    图 5  含缝隙与重叠部分的NURBS方板模型

    Figure 5.  NURBS based square plate with gap and overlapping

    图 6  固支方板挠度

    Figure 6.  Deflections of clamped square plate

    图 7  固支方板挠度绝对误差

    Figure 7.  Absolute errors of deflection of clamped square plate

    图 8  不同次数下的非协调方板前10阶频率相对误差

    Figure 8.  Relative errors of first ten mode frequencies of non-conforming square plate with different polynomial degrees

    图 9  不同次数下的第1阶和第2阶非协调方板频率参数收敛

    Figure 9.  Convergence of first two mode frequency parameters of non-conforming square plate with different polynomial degrees

    图 10  非协调固支方板的模态振型

    Figure 10.  Mode shapes of non-conforming clamped square plate

    表  1  非协调固支方板频率参数

    Table  1.   Frequency parameters of non-conforming clamped square plate

    模态阶数 h/l=0.1 h/l=0.2
    等几何分析 Liew等[16] 等几何分析 Liew等[16]
    1 3.297 0 3.295 4 2.688 4 2.687 5
    2 6.270 5 6.285 8 4.680 9 4.690 7
    3 6.304 7 6.285 8 4.702 1 4.690 7
    4 8.810 6 8.809 8 6.298 6 6.298 5
    5 10.377 1 10.378 8 7.174 3 7.176 7
    6 10.484 3 10.477 8 7.278 3 7.275 9
    7 12.539 4 12.552 9 8.507 0 8.515 5
    8 12.570 0 12.552 9 8.522 7 8.515 5
    9 15.296 0 15.291 8 10.008 9 10.012 6
    10 15.305 7 15.291 8 10.017 7 10.012 6
    下载: 导出CSV
  • [1] HUGHES T J R, COTTRELL J A, BAZILEVS Y.Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics & Engineering, 2005, 194(s39-41):4135-4195. https://www.researchgate.net/publication/51992200_Isogeometric_analysis_CAD_finite_elements_NURBS_exact_geometry_and_mesh_refinement
    [2] HESCH C, BETSCH P.Isogeometric analysis and domain decomposition methods[J].Computer Methods in Applied Mechanics & Engineering, 2012, 213(1):104-112. http://www.sciencedirect.com/science/article/pii/S0045782511003823
    [3] 祝雪峰. 复杂曲面非协调等几何分析及相关造型方法[D]. 大连: 大连理工大学, 2012.

    ZHU X F.Nonconforming isogeometric analysis for geometrically complex CAD surfaces and geometric modeling[D].Dalian:Dalian University of Technology, 2012(in Chinese).
    [4] NGUYEN V P, KERFRIDEN P, BRINO M, et al.Nitsche's method for two and three dimensional NURBS patch coupling[J].Computational Mechanics, 2014, 53(6):1-20. doi: 10.1007/s00466-013-0955-3
    [5] APOSTOLATOS A, SCHMIDT R, WVCHNER R, et al.A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[J].International Journal for Numerical Methods in Engineering, 2014, 97(7):473-504. doi: 10.1002/nme.v97.7
    [6] RUESS M, SCHILLINGER D, ÖZCAN A I, et al.Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries[J].Computer Methods in Applied Mechanics & Engineering, 2014, 269(2):46-71. https://www.researchgate.net/publication/259095237_Weak_coupling_for_isogeometric_analysis_of_non-matching_and_trimmed_multi-patch_geometries
    [7] GUO Y, RUESS M.Nitsche's method for a coupling of isogeometric thin shells and blended shell structures[J].Computer Methods in Applied Mechanics & Engineering, 2015, 284:881-905. https://www.researchgate.net/publication/273179241_Nitsche%27s_method_for_a_coupling_of_isogeometric_thin_shells_and_blended_shell_structures
    [8] DU X X, ZHAO G, WANG W.Nitsche method for isogeometric analysis of Reissner-Mindlin plate with non-conforming multi-patches[J].Computer Aided Geometric Design, 2015(s35-36):121-136. http://www.sciencedirect.com/science/article/pii/S016783961500028X
    [9] NITSCHE J.Vber ein variationsprinzip zur l sung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind[J].Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1971, 36:9-15. doi: 10.1007/BF02995904
    [10] SANDERS J D, LAURSEN T A, PUSO M A.A Nitsche embedded mesh method[J].Computational Mechanics, 2012, 49(2):243-257. doi: 10.1007/s00466-011-0641-2
    [11] PIEGL L, TILLER W.The NURBS book[M].2nd ed.New York:Springer, 1997.
    [12] XU G, MOURRAIN B, DUVIGNEAU R, et al.Parameterization of computational domain in isogeometric analysis:Methods and comparison[J].Computer Methods in Applied Mechanics & Engineering, 2011, 200(s23-24):2021-2031. https://www.researchgate.net/publication/251502906_Parameterization_of_computational_domain_in_isogeometric_analysis_Methods_and_comparison
    [13] ZIENKIEWICZ O C, TAYLOR R L.The finite element method for solid and structural mechanics[M].6th ed.Singapore:Butterworth-Heinemann, 2005:323-336.
    [14] CHINOSI C, LOVADINA C.Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates[J].Computational Mechanics, 1995, 16(1):36-44. doi: 10.1007/BF00369883
    [15] KIENDL J, AURICCHIO F, VEIGA L B D, et al.Isogeometric collocation methods for the Reissner-Mindlin plate problem[J].Computer Methods in Applied Mechanics & Engineering, 2015, 284:489-507. https://www.researchgate.net/publication/268037995_Isogeometric_collocation_methods_for_the_Reissner-Mindlin_plate_problem
    [16] LIEW K M, XIANG Y, KITIPORNCHAI S.Transverse vibration of thick rectangular plates-I.Comprehensive sets of boundary conditions[J].Computers & Structures, 1993, 49(1):1-29. http://www.sciencedirect.com/science/article/pii/004579499390122T
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  124
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-21
  • 录用日期:  2016-05-06
  • 网络出版日期:  2017-03-20

目录

    /

    返回文章
    返回
    常见问答