-
摘要:
针对后掠角可变的变体飞行器,研究了一类变体飞行器的建模与控制问题。拟合气动参数与后掠角变化的关系,利用Jacobian线性化的方法得到线性变参数(LPV)模型。进一步建立一类平滑切换系统,同时引入切换序列受限的链式切换,推导了链式平滑切换系统在有限时间有界且具有鲁棒性能指标的充分条件。设计了一种平滑切换镇定控制器的求解算法,并给出控制增益的求解步骤。基于广义系统理论提出了保证变体飞行器姿态跟踪系统鲁棒稳定的充分条件,并通过算例验证所提方法有效性。
Abstract:Aimed at morphing aircraft with variable sweepback, this paper studies the issue of modeling and control for a class of morphing aircrafts. Fitting the relationship between aerodynamic parameters and sweepback, we developed linear parameter varying (LPV) model by Jacobian linearization approach. Then a smooth switching system approach with limited switching sequence, chain switching, is modeled, and the sufficient conditions are provided to ensure the finite-time boundedness and robust performance index of the chain smooth switched system. A solving algorithm of stabilizer for smooth switching controller is proposed, and the solving steps for gain control are presented. Based on the generalized system theory, the sufficient conditions for robust stability of the attitude tracking system are proposed. The numerical example simulation results are given to illustrate the validity of the devised approach.
-
Key words:
- robust control /
- smooth switching /
- switching system /
- morphing aircrafts /
- chain switching
-
表 1 变体飞行器构型参数
Table 1. Configuration parameters of morphing aircraft
形态 ν/(°) Jyf/(kg·m2) mT/kg mw/kg ma/kg xw/m xa/m B/m S/m2 cA/m 巡航 15 3 107.5 907.8 272 26.36 0 -3.2 6.803 3 4.362 1 0.710 1 高速 60 3 107.5 907.8 272 26.36 -0.607 2 3.065 6 3.84 6.079 2 1.911 7 注: ν—后掠角; Jyf—俯仰转动惯量; mT—总重; ma—配重;xa—配重质心位置; B—翼展。 表 2 切换子系统控制增益矩阵
Table 2. Gain control matrix of switched subsystem
构型 反馈控制增益 Kx, i Kβ, i M15 M20 M25 M30 M35 M40 M45 M50 M55 M60 -
[1] WEISSHAAR T A.Morphing aircraft systems:Historical perspectives and future challenges[J].Journal of Aircraft, 2013, 50(2):337-353. doi: 10.2514/1.C031456 [2] CROSSLEY W A, SKILLEN M D, FROMMER J B.Morphing aircraft sizing using design optimization[J].Journal of Aircraft, 2011, 48(2):612-622. doi: 10.2514/1.C031180 [3] SOFLA A Y N, MEGUID S A, TAN K T, et al.Shape morphing of aircraft wing:Status and challenges[J].Materials and Design, 2010, 31(3):1284-1292. doi: 10.1016/j.matdes.2009.09.011 [4] HUANG R, QIU Z P.Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process[J].Chinese Journal of Aeronautics, 2013, 26(6):1430-1438. doi: 10.1016/j.cja.2013.07.047 [5] POPOV A V, GRIGORIE L T, BOTEZ R.Closed-loop control validation of a morphing wing using wind tunnel tests[J].Journal of Aircraft, 2010, 47(4):1309-1317. doi: 10.2514/1.47281 [6] BALDELL D H, LEE D H, PEÑR S S.et al.Modeling and control of an aeroelastic morphing vehicle[J].Journal of Guidance, Control, and Dynamics, 2008, 31(6):1687-1699. doi: 10.2514/1.35445 [7] RUBAGOTTI M, ZACCARIAN L, BEMPORAD A.A Lyapunovmethod for stability analysis of piecewise-affine systems over non-invariant domains[J].International Journal of Control, 2016, 89(5):950-959. doi: 10.1080/00207179.2015.1108456 [8] CHUMALEE S, WHIDBORNE J F.Gain-scheduled H∞ control via parameter-dependent Lyapunov functions[J].International Journal of Systems Science, 2015, 46(1):125-138. doi: 10.1080/00207721.2013.775386 [9] ROMDLONY M Z, JAYAWARDHANA B.Stabilization with guaranteed safety using control Lyapunov-Barrier function[J].Automatica, 2016, 66:39-47. doi: 10.1016/j.automatica.2015.12.011 [10] ANIMESH C, DANIEL T G, RICK L.Time-varying dynamics of a micro air vehicle with variable-sweep morphing[J].Journal of Guidance, Control, and Dynamics, 2012, 35(3):890-903. doi: 10.2514/1.55078 [11] 乐挺, 王立新, 艾俊强.Z型翼变体飞机的纵向多体动力学特性[J].航空学报, 2010, 31(4):679-686. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004006.htmYUE T, WANG L X, AI J Q.Longitudinal multibody dynamic characteristics of Z-wing morphing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(4):679-686(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004006.htm [12] YUE T, WANG L X, AI J Q.Longitudinal linear parameter varying modeling and simulation of morphing aircraft[J].Journal of Aircraft, 2013, 50(6):1673-1681. doi: 10.2514/1.C031316 [13] 薛静, 杨亚洁, 刘宇, 等.基于L1自适应控制的无人机横侧向控制[J].西北工业大学学报, 2015, 33(1):40-44. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201501008.htmXUE J, YANG Y J, LIU Y, et al. Lateral roll angle control of UAV based on L1 adaptive control method[J].Journal of Northwestern Polytechnical University, 2015, 33(1):40-44(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201501008.htm [14] SEIGLER T M, NEAL D A.Analysis of transition stability for morphing aircraft[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1947-1953. doi: 10.2514/1.44108 [15] CUI L, CHEN L, DUAN D P.Gain-scheduling model predictive control for unmanned airship with LPV system description[J].Journal of Systems Engineering and Electronics, 2015, 26(5):1043-1051. doi: 10.1109/JSEE.2015.00113 [16] YUE T, WANG L X, AI J Q.Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model[J].Chinese Journal of Aeronautics, 2013, 26(4):909-917. doi: 10.1016/j.cja.2013.06.004 [17] 段广仁, 王好谦.多模型切换控制及其在BTT导弹设计中的应用[J].航空学报, 2005, 26(2):144-147. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200502003.htmDUAN G R, WANG H Q.Multi-model switching control and its application to BTT missile design[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(2):144-147(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200502003.htm [18] HOU Y Z, WANG Q, DONG C Y.Gain scheduled control:Switched polytopic system approach[J].Journal of Guidance, Control, and Dynamics, 2011, 34(2):623-629. doi: 10.2514/1.51699 [19] HOU Y Z, DONG C Y, WANG Q.Stability analysis of switched linear systems with locally overlapped switching law[J].Journal of Guidance, Control, and Dynamics, 2010, 33(2):396-403. doi: 10.2514/1.45795