-
摘要:
基于非均匀有理B样条的自由型面变形(NFFD)技术具有对变形对象普适性和控制点影响区域局部性的特点,广泛应用于气动外形优化。本文通过扩展控制体和合理布置外侧控制点,实现了NFFD技术在参数化曲面并改变曲面形状时,同步变形控制体内的表面网格和空间网格,并从理论上保证了控制体边界内外的网格协调。基于离散伴随方法求取梯度,分别采用拟牛顿(QN)法和序列二次规划(SQP)优化方法,通过从初始翼型NACA0012到标准翼型EH1590的反设计,研究了NFFD控制点数量和分布对设计结果的影响。在某飞翼标模单点全机升阻比优化应用中,改进控制点分布后获得了更高的升阻比,收敛速度显著提高。
Abstract:The NURBS based free-form deformation (NFFD), which is universal for representation of object geometry, and whose control point influence zone is local for geometry deformation, is used widely for aerodynamic shape optimization. By extending the control volume and locating the outer control points appropriately, NFFD is used to parameterize the surface, deform the surface grid and volume grid in one single process. The grid cells both inside and outside control volume are preserved consistent theoretically after shape deformation. With the gradient of object function calculated by discrete adjoint method, both the quasi-Newton (QN) and sequential quadratic programming (SQP) optimization techniques are applied to inverse airfoil design from the initial airfoil, NACA0012, to the standard flying-wing airfoil, EH1590. The effects of the number and distribution of control points on optimization result are discussed. In the case of the lift-to-drag ratio optimization for a whole aircraft with flying-wing in a single design state, the convergence speed is improved obviously and higher lift-to-drag ratio is obtained by improving the distribution of control points.
-
-
[1] BARRETT T R, BRESSLOFF N W, KEANE A J.Airfoil shape design and optimization using multifidelity analysis and embedded inverse design[J].AIAA Journal, 2006, 44(9):2051-2060. doi: 10.2514/1.18766 [2] 靳军, 刘波, 曹志鹏, 等.基于NURBS的三维轴流压气机叶片的几何型面优化研究[J].航空动力学报, 2005, 20(4):625-629. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200504017.htmJIN J, LIU B, CAO Z P, et al.Investigation of 3D axial flow compressor blade shape optimization based on NURBS[J].Journal of Aerospace Power, 2005, 20(4):625-629(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200504017.htm [3] 马晓永, 范召林, 吴文华, 等.基于NURBS方法的机翼气动外形优化[J].航空学报, 2011, 32(9):1616-1621. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109009.htmMA X Y, FAN Z L, WU W H, et al.Aerodynamic shape optimization for wing based on NURBS[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1616-1621(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109009.htm [4] 卜月鹏, 宋文萍, 韩忠华, 等.基于CST参数化方法的翼型气动优化设计[J].西北工业大学学报, 2013, 31(5):829-836. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201305032.htmBU Y P, SONG W P, HAN Z H, et al.Aerodynamic optimization design of airfoil based on CST parameterization method[J].Journal of Northwestern Polytechnical University, 2013, 31(5):829-836(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201305032.htm [5] 李静, 高正红, 黄江涛, 等.基于CST参数化方法气动优化设计研究[J].空气动力学学报, 2012, 30(4):443-449. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201305032.htmLI J, GAO Z H, HUANG J T, et al.Aerodynamic optimization system based on CST technique[J].Acta Aerodynamica Sinica, 2012, 30(4):443-449(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201305032.htm [6] 王迅, 蔡晋生, 屈崑, 等.基于改进CST参数化方法和转捩模型的翼型优化设计[J].航空学报, 2015, 36(2):449-461. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502005.htmWANG X, CAI J S, QU K, et al.Airfoil optimization based on improved CST parametric method and transition model[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(2):449-461(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502005.htm [7] 陈颂, 白俊强, 孙智伟, 等.基于DFFD技术的翼型气动优化设计[J].航空学报, 2014, 35(3):695-705. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403010.htmCHEN S, BAI J Q, SUN Z W, et al.Aerodynamic optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403010.htm [8] AMOIRALIS E I, NIKOLOS I K.Freeform deformation versus B-spline representation in inverse airfoil design[J].Journal of Computing and Information Science in Engineering, 2008, 8(2):1-13. [9] 李彬, 邓有奇, 唐静, 等.基于三维非结构网格的离散型伴随方法[J].航空学报, 2014, 35(3):674-686. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201302019.htmLI B, DENG Y Q, TANG J, et al.Discrete adjoint method for 3D on unstructured grid[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201302019.htm [10] 王丹, 白俊强, 黄江涛.FFD方法在气动优化设计中的应用[J].中国科学:物理学力学天文学, 2014, 44(3):267-277. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201403006.htmWANG D, BAI J Q, HUANG J T.The application of FFD method in aerodynamic optimization design[J].Scientia Sinica:Physica, Mechanica & Astronomica, 2014, 44(3):267-277(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201403006.htm [11] 王元元, 张彬乾, 郭兆电, 等.基于FFD技术的大型运输机上翘后体气动优化设计[J].航空学报, 2013, 34(8):1806-1814. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308007.htmWANG Y Y, ZHANG B Q, GUO Z D, et al.Aerodynamic optimization design for large upswept afterbody of transport aircraft based on FFD technology[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1806-1814(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308007.htm [12] 黄江涛, 高正红, 白俊强, 等.基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J].航空学报, 2013, 34(1):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201301004.htmHUANG J T, GAO Z H, BAI J Q, et al.Study of robust winglet design based on arbitrary space shape FFD technique[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-46(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201301004.htm [13] RONZHEIMER A, HEPPERLE M, BREZILLON J, et al.Aerodynamic optimal engine integration for a business jet configuration:AIAA-2012-1841[R].Reston:AIAA, 2012. [14] LI J, GAO Z H, HUANG J T, et al.Aerodynamic design optimization of nacelle/pylon position on an aircraft[J].Chinese Journal of Aeronautics, 2013, 26(4):850-857. doi: 10.1016/j.cja.2013.04.052 [15] 王婧超, 李立州, 岳珠峰.自由网格变形技术在涡轮叶片多学科设计优化过程中的应用[J].飞机设计, 2006, 27(3):40-43. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ200603008.htmWANG J C, LI L Z, YUE Z F.Free-form deformation application in multidisciplinary design optimization procedure of turbine blades[J].Aircraft Design, 2006, 27(3):40-43(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ200603008.htm [16] KENWAY G K W, KENNEDY G J.A CAD-free approach to high-fidelity aerostructural optimization:AIAA-2010-9231[R].Reston:AIAA, 2010. [17] 唐静, 邓有奇, 马明生, 等.飞翼气动优化中参数化和网格变形技术[J].航空学报, 2015, 36(5):1480-1490. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505011.htmTANG J, DENG Y Q, MA M S, et al.Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505011.htm [18] LYU Z, MARTINS J R R A.RANS-based aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-2586[R].Reston:AIAA, 2013. [19] SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[J].ACM Siggraph Computer Graphics, 1986, 20(4):151-160. doi: 10.1145/15886 [20] LAMOUSIN H J, WAGGENSPACK W N.NURBS-based free-form deformations[J].Computer Graphics and Applications, 1994, 14(6):59-65. doi: 10.1109/38.329096 [21] YAMAZAKI W, MOUTON S, CARRIER G.Efficient design optimization by physics-based direct manipulation free-form deformation:AIAA-2008-5953[R].Reston:AIAA, 2008. [22] FARIN G.Curves and surfaces for computer aided geometry design-A practical guide[M].5th ed.New York:Academic Press, 2002. [23] PANIER E R, TITS A L.On combining feasibility, descent and superlinear convergence in inequality constrained optimization[J].Math Programming, 1993, 59(1):261-276.