留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于框架域的随机游走全色锐化方法

王敬凯 杨小远

王敬凯, 杨小远. 基于框架域的随机游走全色锐化方法[J]. 北京航空航天大学学报, 2017, 43(4): 709-719. doi: 10.13700/j.bh.1001-5965.2016.0311
引用本文: 王敬凯, 杨小远. 基于框架域的随机游走全色锐化方法[J]. 北京航空航天大学学报, 2017, 43(4): 709-719. doi: 10.13700/j.bh.1001-5965.2016.0311
WANG Jingkai, YANG Xiaoyuan. Framelet-based random walk pan-sharpening method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 709-719. doi: 10.13700/j.bh.1001-5965.2016.0311(in Chinese)
Citation: WANG Jingkai, YANG Xiaoyuan. Framelet-based random walk pan-sharpening method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 709-719. doi: 10.13700/j.bh.1001-5965.2016.0311(in Chinese)

基于框架域的随机游走全色锐化方法

doi: 10.13700/j.bh.1001-5965.2016.0311
基金项目: 

国家自然科学基金 61671002

北京市自然科学基金 4152029

详细信息
    作者简介:

    王敬凯, 男, 博士研究生。主要研究方向:多源遥感图像融合

    杨小远, 女, 博士, 教授, 博士生导师。主要研究方向:应用调和分析与图像处理

    通讯作者:

    杨小远, E-mail:xiaoyuanyang@vip.163.com

  • 中图分类号: O29

Framelet-based random walk pan-sharpening method

Funds: 

National Natural Science Foundation of China 61671002

Beijing Municipal Natural Science Foundation 4152029

More Information
  • 摘要:

    针对多光谱图像与全色图像的融合问题,提出了一种新的全色锐化方法。该方法首先通过亮度、色调、饱和度(IHS)变换与非下采样框架变换将原图像从空间域变换到框架域,然后利用基于图论的随机游走,建立高频框架系数的统计融合模型。此模型根据高频框架系数的邻域相关性与尺度相关性构造新的随机游走协调函数,将高频框架系数融合权重的估计转化为随机游走标记问题的求解。实验结果表明,该方法有利于保持图像的光谱信息和边缘轮廓信息,可以在降低融合图像光谱误差的同时提高空间分辨率,并且优于一些主流全色锐化方法。

     

  • 图 1  基于图论的随机游走

    Figure 1.  Random walk based on graph theory

    图 2  高频框架系数的邻域相关性与尺度相关性

    Figure 2.  Neighborhood correlation and scale correlation of high frequency framelet coefficients

    图 3  全色图像与多光谱图像

    Figure 3.  Panchromatic images and multispectral images

    图 4  评价指标随k1k2的变化

    Figure 4.  Variation of evaluation indices with k1 and k2

    图 5  融合图像

    Figure 5.  Fusion images

    表  1  不同分解尺度的融合结果

    Table  1.   Fusion results for different decomposition level

    图像 J RASE (0) ERGAS (0) SCC (1)
    PY-PAN+PY-MS4 2 3.378 8 0.845 8 0.972 0
    3 4.336 5 1.084 2 0.978 9
    4 5.012 0 1.251 5 0.979 6
    WZ-PAN+WZ-MS 2 6.176 5 3.092 5 0.970 6
    3 9.135 6 4.566 7 0.976 9
    4 10.217 4 5.106 1 0.977 4
    下载: 导出CSV

    表  2  取不同k2的融合结果

    Table  2.   Fusion results for different k2

    图像 k2 RASE (0) ERGAS (0) SCC (1)
    PY-PAN+PY-MS 0.1 3.796 0 0.950 1 0.993 1
    0.5 3.544 8 0.887 4 0.985 3
    0.9 3.403 2 0.852 0 0.974 9
    1.0 3.378 8 0.845 8 0.972 0
    1.1 3.358 4 0.840 7 0.969 2
    1.5 3.289 3 0.823 6 0.957 2
    1.9 3.243 3 0.812 2 0.944 8
    2.0 3.232 6 0.809 5 0.941 7
    WZ-PAN+WZ-MS 0.1 9.374 3 4.686 2 0.991 8
    0.5 7.468 1 3.735 7 0.985 1
    0.9 6.377 2 3.192 3 0.973 8
    1.0 6.176 5 3.092 5 0.970 6
    1.1 5.996 6 3.003 0 0.967 3
    1.5 5.439 3 2.725 9 0.953 0
    1.9 5.062 7 2.538 8 0.938 1
    2.0 4.986 7 2.501 1 0.934 3
    下载: 导出CSV

    表  3  不同融合方法的融合结果

    Table  3.   Fusion results of different fusion methods

    图像 融合方法 RASE (0) ERGAS (0) SCC (1)
    PY-PAN+PY-MS GS 14.453 6 3.626 0 0.998 8
    IHS 13.193 0 3.272 8 0.999 6
    MTF+GLP 3.950 3 0.990 7 0.966 1
    AWT+CDWL 4.964 8 1.237 3 0.903 9
    AWT+SDM 6.793 1 1.695 0 0.993 9
    NSCT 7.863 2 1.995 9 0.999 0
    NFLT+CI 3.959 7 0.990 7 0.960 0
    SRDIP 3.742 8 0.935 3 0.948 0
    RW 9.485 9 2.355 0 0.986 5
    NFT+RW (k2=0.1) 3.796 0 0.950 1 0.993 1
    NFT+RW (k2=0.5) 3.544 8 0.887 4 0.985 3
    NFT+RW (k2=0.9) 3.403 2 0.852 0 0.974 9
    WZ-PAN+WZ-MS GS 32.363 8 16.231 3 0.990 1
    IHS 33.678 2 16.822 8 0.999 5
    MTF+GLP 6.440 0 3.232 3 0.868 9
    AWT+CDWL 13.256 7 6.614 3 0.931 9
    AWT+SDM 18.870 9 9.419 8 0.949 8
    NSCT 16.173 3 8.102 5 0.996 6
    NFLT+CI 6.437 4 3.223 8 0.956 3
    SRDIP 7.792 3 3.891 6 0.943 9
    RW 21.363 4 10.672 8 0.982 4
    NFT+RW (k2=0.1) 9.374 3 4.686 2 0.991 8
    NFT+RW (k2=0.5) 7.468 1 3.735 7 0.985 1
    NFT+RW (k2=0.9) 6.377 2 3.192 3 0.973 8
    下载: 导出CSV

    表  4  不同融合方法的运行时间

    Table  4.   Elapsed time of different fusion methodss

    融合方法 PY图像融合 WZ图像融合
    GS 0.195 6 0.232 6
    IHS 0.114 3 0.117 6
    MTF+GLP 73.718 5 72.531 1
    AWT+CDWL 0.835 5 0.877 4
    AWT+SDM 0.718 5 0.779 5
    NSCT 4.854 4 4.873 6
    NFLT+CI 0.557 0 0.394 8
    SRDIP 1 243.125 6 1 306.896 6
    RW 1.652 0 1.666 5
    NFT+RW (k2=0.1) 7.513 5 7.232 2
    NFT+RW (k2=0.5) 7.510 9 7.254 2
    NFT+RW (k2=0.9) 7.530 1 7.375 4
    下载: 导出CSV
  • [1] CHAVEZ P S, SIDES J S C, ANDERSON J A.Comparison of three different methods to merge multiresolution and multispectral data Landsat TM and SPOT panchromatic[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(3):265-303.
    [2] LABEN C A, BROWER B V.Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:US 6011875 A[P].2000-04-01.
    [3] TU T M, SU S C, SHYU H C, et al.A new look at IHS-like image fusion methods[J].Information Fusion, 2001, 2(3):177-186. doi: 10.1016/S1566-2535(01)00036-7
    [4] SHAH V P, YOUNAN N H, KING R L.An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5):1323-1335. doi: 10.1109/TGRS.2008.916211
    [5] WANG W, JIAO L, YANG S.Novel adaptive component substitution based pan-sharpening using particle swarm optimization[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):781-785. doi: 10.1109/LGRS.2014.2361834
    [6] ZHOU J, CIVCO D L, SILANDER J A.A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J].International Journal of Remote Sensing, 1998, 19(4):743-757. doi: 10.1080/014311698215973
    [7] 袁晓冬, 李超, 盛浩.小波多分辨分量相关性图像融合方法[J].北京航空航天大学学报, 2013, 39(6):847-852. http://bhxb.buaa.edu.cn/CN/abstract/abstract12658.shtml

    YUAN X D, LI C, SHENG H.Wavelet multi resolution weight correlation image fusion method[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6):847-852(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12658.shtml
    [8] NUNEZ J, OTAZU X, FORS O, et al.Multiresolution based image fusion with additive wavelet decomposition[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1204-1211. doi: 10.1109/36.763274
    [9] GARZELLI A, BENELLI G, BARNI M, et al.Improving wavelet based merging of panchromatic and multispectral images by contextual information[J].Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4170:82-91.
    [10] GARZELLI A, NENCINI F.Interband structure modeling for Pan-sharpening of very high-resolution multispectral images[J].Information Fusion, 2005, 6(3):213-224. doi: 10.1016/j.inffus.2004.06.008
    [11] AIAZZI B, ALPARONE L, BARONTI S, et al.Context driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J].IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10):2300-2312. doi: 10.1109/TGRS.2002.803623
    [12] AIAZZI B, AIPARONE L, BARONTI S, et al.MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J].Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596. doi: 10.14358/PERS.72.5.591
    [13] CHOI M, KIM R Y, NAM M R, et al.Fusion of multispectral and panchromatic satellite images using the curvelet transform[J].IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):136-140. doi: 10.1109/LGRS.2005.845313
    [14] 贾建, 焦李成, 孙强.基于非下采样Contourlet变换的多传感器图像融合[J].电子学报, 2007, 35(10):1934-1938. doi: 10.3321/j.issn:0372-2112.2007.10.022

    JIA J, JIAO L C, SUN Q.The nonsubsampled contourlet transform in multisensory images fusion[J].Acta Electronica Sinica, 2007, 35(10):1934-1938(in Chinese). doi: 10.3321/j.issn:0372-2112.2007.10.022
    [15] 陶旭婷, 和红杰, 陈帆, 等.基于局部相关性的遥感图像全色锐化算法[J].光子学报, 2014, 43(3):310003-1-310003-6. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403027.htm

    TAO X T, HE H J, CHEN F, et al.Pan-sharpening algorithm for remote sensing images based on local correlation[J].Acta Photonica Sinica, 2014, 43(3):310003-1-310003-6(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403027.htm
    [16] LI S, KWOK J T, WANG Y.Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images[J].Information Fusion, 2002, 3(1):17-23. doi: 10.1016/S1566-2535(01)00037-9
    [17] SHI Y, YANG X Y, CHENG T.Pansharpening of multispectral images using the nonseparable framelet lifting transform with high vanishing moments[J].Information Fusion, 2014, 20(1):213-224.
    [18] FANG F, ZHANG G, LI F, et al.Framelet based pan-sharpening via a variational method[J].Neurocomputing, 2014, 129(1):362-377.
    [19] SHI C, LIU F, LI L, et al.Learning interpolation via regional map for pan-sharpening[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3417-3431. doi: 10.1109/TGRS.2014.2375931
    [20] GARZELLI A.Pansharpening of multispectral images based on nonlocal parameter optimization[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2096-2107. doi: 10.1109/TGRS.2014.2354471
    [21] VICINANZA M R, RESTAINO R, VIVONE G, et al.A pansharpening method based on the sparse representation of injected details[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):180-184. doi: 10.1109/LGRS.2014.2331291
    [22] YIN H T.Sparse representation based pansharpening with details injection model[J].Signal Processing, 2015, 113:218-227. doi: 10.1016/j.sigpro.2014.12.017
    [23] VIVONE G, ALPARONE L, CHANUSSOT J, et al.A critical comparison among pansharpening algorithms[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2565-2586. doi: 10.1109/TGRS.2014.2361734
    [24] GRADY L.Multilabel random walker image segmentation using prior models[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2005:763-770.
    [25] GRADY L.Random walks for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11):1768-1783. doi: 10.1109/TPAMI.2006.233
    [26] SHEN R, CHENG I, SHI J, et al.Generalized random walks for fusion of multi-exposure images[J].IEEE Transactions on Image Processing, 2011, 20(12):3634-3646. doi: 10.1109/TIP.2011.2150235
    [27] HUA K L, WANG H C, RUSDI A H, et al.A novel multi-focus image fusion algorithm based on random walks[J].Journal of Visual Communication and Image Representation, 2014, 25(5):951-962. doi: 10.1016/j.jvcir.2014.02.009
    [28] SHI Y, YANG X Y, GUO Y H.Translation invariant directional framelet transform combined with gabor filters for image denoising[J].IEEE Transactions on Image Processing, 2014, 23(1):44-55. doi: 10.1109/TIP.2013.2285595
    [29] DAUBECHIES I, HAN B, RON A, et al.Framelets:MRA-based constructions of wavelet frames[J].Applied and Computational Harmonic Analysis, 2003, 14(1):1-46. doi: 10.1016/S1063-5203(02)00511-0
    [30] CROUSE M S, NOWAK R D, BARANIUK R G.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing, 1998, 46(4):886-902. doi: 10.1109/78.668544
    [31] WALD L.Quality of high resolution synthesised images:Is there a simple criterion [C]//Procedings of the third Conference "Fusion of Earth Data:Merging Point Measurements, Raster Maps and Remotely Sensed Images".[S.l.]:SEE/URISCA, 2000:99-103.
    [32] OTAZU X, GONZALEZ-AUDICANA M, FORS O, et al.Introduction of sensor spectral response into image fusion methods.Application to wavelet-based methods[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2376-2385. doi: 10.1109/TGRS.2005.856106
    [33] SONNEVELD P.CGS, a fast lanczos-type solver for nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing, 1989, 10(1):36-52. doi: 10.1137/0910004
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  30
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 录用日期:  2016-06-02
  • 网络出版日期:  2017-04-20

目录

    /

    返回文章
    返回
    常见问答