-
摘要:
针对多光谱图像与全色图像的融合问题,提出了一种新的全色锐化方法。该方法首先通过亮度、色调、饱和度(IHS)变换与非下采样框架变换将原图像从空间域变换到框架域,然后利用基于图论的随机游走,建立高频框架系数的统计融合模型。此模型根据高频框架系数的邻域相关性与尺度相关性构造新的随机游走协调函数,将高频框架系数融合权重的估计转化为随机游走标记问题的求解。实验结果表明,该方法有利于保持图像的光谱信息和边缘轮廓信息,可以在降低融合图像光谱误差的同时提高空间分辨率,并且优于一些主流全色锐化方法。
Abstract:A novel pan-sharpening method was proposed for the fusion of multispectral image and panchromatic image. First, the original image was transformed from spatial domain to framelet domain by intensity, hue, saturation (IHS) transform and non-subsampled framelet transform. Second, the statistical fusion model of high frequency framelet coefficients was established with the random walk method based on graph theory. On basis of the neighborhood correlation and scale correlation of high frequency framelet coefficients, the novel compatibility function for random walk was constructed. Finally, the fusion weight estimation of high frequency framelet coefficients was translated into the solution of the random walk labeled problem. Experimental results show that the proposed method is beneficial to keep the spectral information and edge contour information of the image. It can reduce the spectral distortion while improve the spatial resolution simultaneously, and it outperforms the other state-of-the-art pan-sharpening methods.
-
Key words:
- pan-sharpening /
- framelet transform /
- random walk /
- multispectral image /
- panchromatic image
-
表 1 不同分解尺度的融合结果
Table 1. Fusion results for different decomposition level
图像 J RASE (0) ERGAS (0) SCC (1) PY-PAN+PY-MS4 2 3.378 8 0.845 8 0.972 0 3 4.336 5 1.084 2 0.978 9 4 5.012 0 1.251 5 0.979 6 WZ-PAN+WZ-MS 2 6.176 5 3.092 5 0.970 6 3 9.135 6 4.566 7 0.976 9 4 10.217 4 5.106 1 0.977 4 表 2 取不同k2的融合结果
Table 2. Fusion results for different k2
图像 k2 RASE (0) ERGAS (0) SCC (1) PY-PAN+PY-MS 0.1 3.796 0 0.950 1 0.993 1 0.5 3.544 8 0.887 4 0.985 3 0.9 3.403 2 0.852 0 0.974 9 1.0 3.378 8 0.845 8 0.972 0 1.1 3.358 4 0.840 7 0.969 2 1.5 3.289 3 0.823 6 0.957 2 1.9 3.243 3 0.812 2 0.944 8 2.0 3.232 6 0.809 5 0.941 7 WZ-PAN+WZ-MS 0.1 9.374 3 4.686 2 0.991 8 0.5 7.468 1 3.735 7 0.985 1 0.9 6.377 2 3.192 3 0.973 8 1.0 6.176 5 3.092 5 0.970 6 1.1 5.996 6 3.003 0 0.967 3 1.5 5.439 3 2.725 9 0.953 0 1.9 5.062 7 2.538 8 0.938 1 2.0 4.986 7 2.501 1 0.934 3 表 3 不同融合方法的融合结果
Table 3. Fusion results of different fusion methods
图像 融合方法 RASE (0) ERGAS (0) SCC (1) PY-PAN+PY-MS GS 14.453 6 3.626 0 0.998 8 IHS 13.193 0 3.272 8 0.999 6 MTF+GLP 3.950 3 0.990 7 0.966 1 AWT+CDWL 4.964 8 1.237 3 0.903 9 AWT+SDM 6.793 1 1.695 0 0.993 9 NSCT 7.863 2 1.995 9 0.999 0 NFLT+CI 3.959 7 0.990 7 0.960 0 SRDIP 3.742 8 0.935 3 0.948 0 RW 9.485 9 2.355 0 0.986 5 NFT+RW (k2=0.1) 3.796 0 0.950 1 0.993 1 NFT+RW (k2=0.5) 3.544 8 0.887 4 0.985 3 NFT+RW (k2=0.9) 3.403 2 0.852 0 0.974 9 WZ-PAN+WZ-MS GS 32.363 8 16.231 3 0.990 1 IHS 33.678 2 16.822 8 0.999 5 MTF+GLP 6.440 0 3.232 3 0.868 9 AWT+CDWL 13.256 7 6.614 3 0.931 9 AWT+SDM 18.870 9 9.419 8 0.949 8 NSCT 16.173 3 8.102 5 0.996 6 NFLT+CI 6.437 4 3.223 8 0.956 3 SRDIP 7.792 3 3.891 6 0.943 9 RW 21.363 4 10.672 8 0.982 4 NFT+RW (k2=0.1) 9.374 3 4.686 2 0.991 8 NFT+RW (k2=0.5) 7.468 1 3.735 7 0.985 1 NFT+RW (k2=0.9) 6.377 2 3.192 3 0.973 8 表 4 不同融合方法的运行时间
Table 4. Elapsed time of different fusion methodss
融合方法 PY图像融合 WZ图像融合 GS 0.195 6 0.232 6 IHS 0.114 3 0.117 6 MTF+GLP 73.718 5 72.531 1 AWT+CDWL 0.835 5 0.877 4 AWT+SDM 0.718 5 0.779 5 NSCT 4.854 4 4.873 6 NFLT+CI 0.557 0 0.394 8 SRDIP 1 243.125 6 1 306.896 6 RW 1.652 0 1.666 5 NFT+RW (k2=0.1) 7.513 5 7.232 2 NFT+RW (k2=0.5) 7.510 9 7.254 2 NFT+RW (k2=0.9) 7.530 1 7.375 4 -
[1] CHAVEZ P S, SIDES J S C, ANDERSON J A.Comparison of three different methods to merge multiresolution and multispectral data Landsat TM and SPOT panchromatic[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(3):265-303. [2] LABEN C A, BROWER B V.Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:US 6011875 A[P].2000-04-01. [3] TU T M, SU S C, SHYU H C, et al.A new look at IHS-like image fusion methods[J].Information Fusion, 2001, 2(3):177-186. doi: 10.1016/S1566-2535(01)00036-7 [4] SHAH V P, YOUNAN N H, KING R L.An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5):1323-1335. doi: 10.1109/TGRS.2008.916211 [5] WANG W, JIAO L, YANG S.Novel adaptive component substitution based pan-sharpening using particle swarm optimization[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):781-785. doi: 10.1109/LGRS.2014.2361834 [6] ZHOU J, CIVCO D L, SILANDER J A.A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J].International Journal of Remote Sensing, 1998, 19(4):743-757. doi: 10.1080/014311698215973 [7] 袁晓冬, 李超, 盛浩.小波多分辨分量相关性图像融合方法[J].北京航空航天大学学报, 2013, 39(6):847-852. http://bhxb.buaa.edu.cn/CN/abstract/abstract12658.shtmlYUAN X D, LI C, SHENG H.Wavelet multi resolution weight correlation image fusion method[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6):847-852(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12658.shtml [8] NUNEZ J, OTAZU X, FORS O, et al.Multiresolution based image fusion with additive wavelet decomposition[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1204-1211. doi: 10.1109/36.763274 [9] GARZELLI A, BENELLI G, BARNI M, et al.Improving wavelet based merging of panchromatic and multispectral images by contextual information[J].Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4170:82-91. [10] GARZELLI A, NENCINI F.Interband structure modeling for Pan-sharpening of very high-resolution multispectral images[J].Information Fusion, 2005, 6(3):213-224. doi: 10.1016/j.inffus.2004.06.008 [11] AIAZZI B, ALPARONE L, BARONTI S, et al.Context driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J].IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10):2300-2312. doi: 10.1109/TGRS.2002.803623 [12] AIAZZI B, AIPARONE L, BARONTI S, et al.MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J].Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596. doi: 10.14358/PERS.72.5.591 [13] CHOI M, KIM R Y, NAM M R, et al.Fusion of multispectral and panchromatic satellite images using the curvelet transform[J].IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):136-140. doi: 10.1109/LGRS.2005.845313 [14] 贾建, 焦李成, 孙强.基于非下采样Contourlet变换的多传感器图像融合[J].电子学报, 2007, 35(10):1934-1938. doi: 10.3321/j.issn:0372-2112.2007.10.022JIA J, JIAO L C, SUN Q.The nonsubsampled contourlet transform in multisensory images fusion[J].Acta Electronica Sinica, 2007, 35(10):1934-1938(in Chinese). doi: 10.3321/j.issn:0372-2112.2007.10.022 [15] 陶旭婷, 和红杰, 陈帆, 等.基于局部相关性的遥感图像全色锐化算法[J].光子学报, 2014, 43(3):310003-1-310003-6. http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403027.htmTAO X T, HE H J, CHEN F, et al.Pan-sharpening algorithm for remote sensing images based on local correlation[J].Acta Photonica Sinica, 2014, 43(3):310003-1-310003-6(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403027.htm [16] LI S, KWOK J T, WANG Y.Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images[J].Information Fusion, 2002, 3(1):17-23. doi: 10.1016/S1566-2535(01)00037-9 [17] SHI Y, YANG X Y, CHENG T.Pansharpening of multispectral images using the nonseparable framelet lifting transform with high vanishing moments[J].Information Fusion, 2014, 20(1):213-224. [18] FANG F, ZHANG G, LI F, et al.Framelet based pan-sharpening via a variational method[J].Neurocomputing, 2014, 129(1):362-377. [19] SHI C, LIU F, LI L, et al.Learning interpolation via regional map for pan-sharpening[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3417-3431. doi: 10.1109/TGRS.2014.2375931 [20] GARZELLI A.Pansharpening of multispectral images based on nonlocal parameter optimization[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2096-2107. doi: 10.1109/TGRS.2014.2354471 [21] VICINANZA M R, RESTAINO R, VIVONE G, et al.A pansharpening method based on the sparse representation of injected details[J].IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):180-184. doi: 10.1109/LGRS.2014.2331291 [22] YIN H T.Sparse representation based pansharpening with details injection model[J].Signal Processing, 2015, 113:218-227. doi: 10.1016/j.sigpro.2014.12.017 [23] VIVONE G, ALPARONE L, CHANUSSOT J, et al.A critical comparison among pansharpening algorithms[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2565-2586. doi: 10.1109/TGRS.2014.2361734 [24] GRADY L.Multilabel random walker image segmentation using prior models[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2005:763-770. [25] GRADY L.Random walks for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11):1768-1783. doi: 10.1109/TPAMI.2006.233 [26] SHEN R, CHENG I, SHI J, et al.Generalized random walks for fusion of multi-exposure images[J].IEEE Transactions on Image Processing, 2011, 20(12):3634-3646. doi: 10.1109/TIP.2011.2150235 [27] HUA K L, WANG H C, RUSDI A H, et al.A novel multi-focus image fusion algorithm based on random walks[J].Journal of Visual Communication and Image Representation, 2014, 25(5):951-962. doi: 10.1016/j.jvcir.2014.02.009 [28] SHI Y, YANG X Y, GUO Y H.Translation invariant directional framelet transform combined with gabor filters for image denoising[J].IEEE Transactions on Image Processing, 2014, 23(1):44-55. doi: 10.1109/TIP.2013.2285595 [29] DAUBECHIES I, HAN B, RON A, et al.Framelets:MRA-based constructions of wavelet frames[J].Applied and Computational Harmonic Analysis, 2003, 14(1):1-46. doi: 10.1016/S1063-5203(02)00511-0 [30] CROUSE M S, NOWAK R D, BARANIUK R G.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing, 1998, 46(4):886-902. doi: 10.1109/78.668544 [31] WALD L.Quality of high resolution synthesised images:Is there a simple criterion [C]//Procedings of the third Conference "Fusion of Earth Data:Merging Point Measurements, Raster Maps and Remotely Sensed Images".[S.l.]:SEE/URISCA, 2000:99-103. [32] OTAZU X, GONZALEZ-AUDICANA M, FORS O, et al.Introduction of sensor spectral response into image fusion methods.Application to wavelet-based methods[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2376-2385. doi: 10.1109/TGRS.2005.856106 [33] SONNEVELD P.CGS, a fast lanczos-type solver for nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing, 1989, 10(1):36-52. doi: 10.1137/0910004