-
摘要:
信号检测是激光多普勒测速(LDV)系统实现高精度的关键技术,针对LDV中微弱多普勒信号的检测,本文从噪声在频域中的统计特性出发,对多普勒信号进行带阻滤波,结合雷达的恒虚警(CFAR)检测技术,设计了基于频域的单元平方和自适应阈值检测算法以解决在低信噪比(SNR)的环境中LDV的信号检测问题,提高LDV的信号探测能力,同时降低其虚警概率。仿真与实验的结果表明:该算法与固定阈值相比可以在SNR为-12 dB时实现信号的完全检测,保持低虚警概率,运算简单,工程适用性强。
-
关键词:
- 激光多普勒测速(LDV)系统 /
- 频域信号检测 /
- 恒虚警(CFAR) /
- 低信噪比(SNR) /
- 自适应阈值
Abstract:Signal detection is the key technology for the high precision of laser Doppler velocimetry (LDV) system. In order to achieve the accurate detection of the weak Doppler signal in LDV, we carried out a band-stop filtering toward the Doppler signal on the ground of the statistical characteristics of the noise in frequency domain. Combined with the constant false alarm rate (CFAR) detection technology of radar, an algorithm of adaptive threshold detection based on the sum of unit square in frequency domain is proposed so as to address the difficulty in signal detection within the atmosphere of low signal noise ratio (SNR), improving the detection performance and decreasing the probability of false alarm. Compared with the fixed threshold through simulations and experiments, this algorithm boasts the advantage of complete detection under the circumstance of SNR -12 dB while maintaining a relatively lower false alarm rate and simple operation as well as great applicability.
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 采样频率/Hz 1000 信噪比/dB -30~0 噪声功率/W 0~25 信号频率/Hz 200 滤波器带宽 0.2 表 2 实验参数
Table 2. Experimental parameters
参数 数值 波长/nm 1550 采样频率/MHz 10 采样点数 1000 光斑面积/mm2 19.6 入射角/rad π/3 滤波器带宽 0.2 -
[1] 范哲, 张春熹, 欧攀, 等.车载三波束多普勒激光雷达波束配置研究[J].中国激光, 2014, 41(2):309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402048.htmFAN Z, ZHANG C X, OU P, et al.Research on beam pointing angle for three-beam Doppler vehicle lidar[J].Chinese Journal of Lasers, 2014, 41(2):309-314(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402048.htm [2] MARU K, WATANABE K.Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting[J].Optics Communications, 2014, 319(9):80-84. https://www.researchgate.net/publication/259994751_Non-mechanical_scanning_laser_Doppler_velocimetry_with_sensitivity_to_direction_of_transverse_velocity_component_using_optical_serrodyne_frequency_shifting [3] QUI H, SOMMERFELD M, DURST F.Two novel Doppler signal detection methods for laser Doppler and phase Doppler anemometry[J].Measurement Science & Technology, 1998, 5(7):769-778. doi: 10.1088/0957-0233/5/7/002 [4] AYDIN N.DWT based adaptive threshold determination in embolic signal detection[C]//NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ:IEEE Press, 2007:214-219. [5] GONÇALVES I B, LEIRIA A, MOURA M M.STFT or CWT for the detection of Doppler ultrasound embolic signals[J].International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(9):964-976. doi: 10.1002/cnm.v29.9 [6] MAALI A, MESLOUB A, DJEDDOU M, et al.Adaptive CA-CFAR threshold for non-coherent IR-UWB energy detector receivers[J].IEEE Communications Letters, 2010, 13(12):959-961. http://ieeexplore.ieee.org/document/5353276/ [7] MATA-MOYA D, DEL-REY-MAESTRE N, JARABO-AMORES M P, et al.An adaptive threshold technique for the LR detector in K-clutter.Validation using IPIX radar[C]//Instrumentation and Measurement Technology Conference.Piscataway, NJ:IEEE Press, 2015:794-799. [8] AUBRY A, DE MAIO A, ORLANDO D, et al.Adaptive detection of point-like targets in the presence of homogeneous clutter and subspace interference[J].IEEE Signal Processing Letters, 2014, 21(7):848-852. doi: 10.1109/LSP.2014.2309434 [9] XIAO Y, CUI G, YI W, et al.Adaptive detection and estimation for an unknown occurring interval signal in correlated Gaussian noise[J].Signal Processing, 2015, 108(2):440-450. http://www.sciencedirect.com/science/article/pii/S0165168414004708 [10] AALO V A PEPPAS K P, EFTHYMOGLOU G.Performance of CA-CFAR detectors in nonhomogeneous positive alpha-stable clutter[J].IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):2027-2038. http://www.academia.edu/13451431/Performance_of_CA_-_CFAR_Detectors_in_Nonhomogeneous_Positive_Alpha_-_Stable_Clutter [11] XU Y, YAN S, MA X, et al.Fuzzy soft decision CFAR detector for the K distribution data[J].IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(4):3001-3013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7376233 [12] 张晓永, 王勇, 陈锋.LFMCW激光雷达门限检测技术[J].四川兵工学报, 2012, 33(2):120-122. http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201202043.htmZHANG X Y, WANG Y, CHEN F.Threshold detection technology of ladar[J].Sichuan Ordnance Journal, 2012, 33(2):120-122(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201202043.htm [13] 徐从安, 何友, 简涛, 等.空域CFAR处理方法综述[J].海军航空工程学院学报, 2011, 26(4):414-418. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201104012.htmXU C A, HE Y, JIAN T, et al.Survey of space CFAR processing[J].Journal of Naval Aeronautical and Astonautical University, 2011, 26(4):414-418(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201104012.htm [14] 何友, 关键, 孟祥伟, 等.雷达自动检测和CFAR处理方法综述[J].系统工程与电子技术, 2001, 23(1):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200101002.htmHE Y, GUAN J, MENG X W, et al.Survey of automatic radar detection and CFAR processing[J].Systems Engineering and Electronics, 2001, 23(1):9-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200101002.htm [15] 周健, 姚宝聚, 龙兴武.激光多普勒信号渡越加宽研究[J].红外与激光工程, 2011, 40(5):826-829. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105012.htmZHOU J, YAO B J, LONG X W.Research on transit broading of laser Doppler signal[J].Infrared and Laser Engineering, 2011, 40(5):826-829(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105012.htm