-
摘要:
基于压电驱动原理和超声波近场悬浮技术,提出了一种可同时承受径向和轴向载荷的超声悬浮轴承方案。此方案只依靠单一激励源即可实现双向支承,结构紧凑,控制简单。为准确预测超声轴承的工作频率和声阻抗,建立了超声轴承的声阻抗网络模型;利用有限元分析(FEA)方法,对超声轴承径向和轴向辐射面的振幅进行了仿真计算;研制了超声悬浮轴承原理样机并开展了轴承悬浮承载能力测试实验。实验结果表明:超声悬浮轴承具有良好的悬浮效果,可承受较大的径向载荷和一定的轴向载荷。此类超声轴承的研究可为未来新型轴承结构的研发开拓新的思路。
-
关键词:
- 非接触式轴承 /
- 超声悬浮 /
- 压电驱动 /
- 换能器 /
- 有限元分析 (FEA)
Abstract:An ultrasonic bearing that can support radial and axial loads simultaneously is proposed based on piezoelectric-driven principle and ultrasonic levitation technology. Supporting in two directions can be achieved only relying on single excitation source, which brings about compact structure and simple control. To predict the ultrasonic bearing's working frequency and acoustic impedance, acoustic impedance network of ultrasonic bearing is modeled. Finite element analysis (FEA) method is adopted to calculate the amplitude on radiating surface of the ultrasonic bearing. In order to verify the ultrasonic bearing's performance, a prototype is developed and levitating capability experiments are conducted. Results in the experiments demonstrate that the ultrasonic bearing shows good suspending performance and is able to support larger radial loads and certain axial loads simultaneously. The design of this kind of ultrasonic bearing will open up a new way to develop novel bearing structure in the future.
-
图 2 超声轴承声阻抗网络模型
ZL1~ZL4—第1段~第4段水平特征阻抗; ZL5L—第5段水平纵振特征阻抗; ZfrantL—辐射面纵振负载阻抗; ZC1~ZC4—第1段~第4段竖直特征阻抗; ZL5F—第5段水平弯振特征阻抗; ZC5L—第5段竖直纵振特征阻抗; ZC5F—第5段竖直弯振特征阻抗; ZfrantF—辐射面弯振负载阻抗; Zback—后盖板负载阻抗; v1—后盖板后端面振速; vSB—螺栓螺帽振速; U—陶瓷叠堆激励电压; I—流经陶瓷的电流; p—陶瓷片数目; C0—陶瓷片静态截止电容; N—陶瓷输出电压与输入电压之比; NL—输出与输入纵振力之比; NF—输出与输入弯振力之比。
Figure 2. Acoustic impedance network model of ultrasonic bearing
-
[1] IDE T, FRIEND J, NAKAMURA K, et al. A non-contact linear bearing and actuator via ultrasonic levitation[J].Sensors & Actuators A Physical, 2007, 135(2):740-747. http://www.sciencedirect.com/science/article/pii/S092442470600536X [2] 常颖, 吴博达, 杨志刚, 等.超声波悬浮推力轴承承载能力及减摩性能[J].吉林大学学报, 2004, 34(2):222-225. http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200402012.htmCHANG Y, WU B D, YANG Z G, et al. Bearing capacity and anti-friction behavior of ultrasonic vibration bearing[J].Journal of Jilin University, 2004, 34(2):222-225(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200402012.htm [3] 田丰君, 车小红, 杨志刚, 等.双向支撑超声波悬浮轴承的设计[J].光学精密工程, 2009, 17(4):813-818. http://cdmd.cnki.com.cn/Article/CDMD-10183-2008060979.htmTIAN F J, CHE X H, YANG Z G, et al. Structure design of bidirectional support ultrasonic levitation bearing[J].Optics and Precision Engineering, 2009, 17(4):813-818(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10183-2008060979.htm [4] 刘家郡. 超声悬浮/气浮的混合悬浮及其行波驱动机理及实验研究[D]. 长春: 吉林大学, 2013: 81-86.LIU J J. Research on principle and design of the driving based on near-filed acoustic levitation and pneumatic suspension[D].Changchun:Jilin University, 2013:81-86(in Chinese). [5] 王冬. 超声悬浮轴承及微小电机机械特性测试技术研究[D]. 南京: 南京航空航天大学, 2010: 25-27.WANG D.Research on ultrasonic suspension bearing and testing technology of micro-motor mechanical property[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:25-27(in Chinese). [6] CHEN C, WANG J S, JIA B, et al.Design of a noncontact spherical bearing based on near-field acoustic levitation[J].Journal of Intelligent Material Systems & Structures, 2013, 25(6):755-767. https://www.researchgate.net/publication/269598000_Design_of_a_noncontact_spherical_bearing_based_on_near-field_acoustic_levitation [7] ZHAO S, TWIEFEL J, WALLASCHEK J.Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing[J].Active & Passive Smart Structures & Integrated Systems, 2009, 7288(53):1-8. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=821993 [8] ZHAO S, MOJRZISCH S, WALLASCHEK J.An ultrasonic levitation journal bearing able to control spindle center position[J].Mechanical Systems & Signal Processing, 2013, 36(1):168-181. https://dr.ntu.edu.sg/handle/10220/17538?show=full [9] YOSHIMOTO S, ANNO Y, SATO Y, et al.Float characteristics of squeeze-film gas bearing with elastic hinges for linear motion guide[J].JSME International Journal, 1997, 40(2):353-359. doi: 10.1299/jsmec.40.353 [10] YOSHIMOTO S, KOBAYASHI H, MIYATAKE M.Floating characteristics of a squeeze-film bearing for a linear motion guide using ultrasonic vibration[J].Tribology International, 2007, 40(3):503-511. doi: 10.1016/j.triboint.2006.05.002 [11] HA D N, STOLARSKI T A, YOSHIMOTO S. An aerodynamic bearing with adjustable geometry and self-lifting capacity. Part 1:Self-lift capacity by squeeze film[J].Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology, 2005, 219(1):33-39. doi: 10.1243/135065005X9682 [12] STOLARSKI T A.Acoustic levitation-A novel alternative to traditional lubrication of contacting surfaces[J].Tribology Online, 2014, 9(4):164-174. doi: 10.2474/trol.9.164 [13] WANG C, AU Y H J.Study of design parameters for squeeze film air journal bearing-excitation frequency and amplitude[J].Mechanical Sciences, 2011, 2(2):147-155. doi: 10.5194/ms-2-147-2011 [14] WANG C, AU Y H J.Levitation characteristics of a squeeze-film air journal bearing at its normal modes[J].The International Journal of Advanced Manufacturing Technology, 2012, 60(1):1-10. https://www.researchgate.net/publication/227096083_Levitation_characteristics_of_a_squeeze-film_air_journal_bearing_at_its_normal_modes [15] WANG C, AU Y H J.Comparative performance of squeeze film air journal bearings made of aluminum and copper[J].The International Journal of Advanced Manufacturing Technology, 2013, 65(1):57-66. doi: 10.1007/s00170-012-4150-z