-
摘要:
在纯净空气来流条件下,对于全高后掠支板与凹腔耦合的燃烧室,采用分级喷射供油,对比研究了壁面喷射当量比对壁面压力和燃烧性能的影响。结果表明:在支板喷射当量比一定的情况下,随着壁面喷射当量比增加,壁面静压峰值升高,静压开始提升的位置向上游移动,总当量比达到1.1时发生溢流;一维分析表明,马赫数在支板附近降到1以下,在凹腔处达到0.5左右,在出口扩张段恢复至1以上,燃烧室处于亚燃模态;燃烧性能方面,保持支板喷射当量比一定,随着壁面喷射当量比的增加,总压恢复系数提高,出口总温增加,燃烧效率降低。
Abstract:For the combustor based on full-height swept strut coupled with cavity, the experiments were conducted under clean air conditions and the inlet air was preheated by storage heater. Liquid kerosene was used as fuel and was injected by stages from the wall and strut. The effect of equivalence ratio of wall injection on the static pressure distribution and combustion performance was studied by experiments and one-dimensional analysis. The results show that as the equivalence ratio of strut was constant, with the increasing of wall injection equivalence ratio, the peak static pressure increased, and the position of the lifting of pressure was moved upward. When the total equivalence ratio reached 1.1, an inlet unstart occurred. One-dimensional analysis shows that the Mach number decreased below 1 in the strut area, then reached 0.5 in cavity and finally back to more than 1 in diverging area of outlet. The combustor worked in subsonic mode. In the combustion performance aspect, increasing of wall injection equivalence ratio ledes to increase of total pressure recovery coefficient, increase of total temperature at exit, but reduction of combustion efficiency.
-
Key words:
- strut /
- cavity /
- staged injection /
- wall injection /
- one-dimensional analysis
-
表 1 实验工况
Table 1. Experimental operation conditions
工况 壁面喷射当量比 支板喷射当量比 总当量比 1 0.12 0.70 0.82 2 0.20 0.70 0.90 3 0.30 0.70 1.00 4 0.12 0.80 0.92 5 0.20 0.80 1.00 6 0.30 0.80 1.10 表 2 不同工况燃烧性能参数
Table 2. Combustion characteristic parameters under different operation conditions
工况 总压恢复系数/% 出口总温/K 燃烧效率/% 1 48.3 2033.92 69.4 2 48.9 2100.31 69.0 3 50.5 2121.43 64.5 4 48.4 2089.50 67.1 5 50.1 2128.63 65.1 -
[1] BEN-YAKAR A, HANSON R K.Cavity flame-holders for ignition and flame stabilization in scramjets:An overview[J].Journal of Propulsion and Power, 2001, 17(4):869-877. doi: 10.2514/2.5818 [2] BOGDANOFF D W.Advanced injection and mixing techniques for scramjet combustors[J].Journal of Propulsion and Power, 1994, 10(2):183-190. doi: 10.2514/3.23728 [3] 刘世杰, 潘余, 刘卫东.超燃冲压发动机支板喷射燃料的燃烧过程试验[J].航空动力学报, 2009, 24(1):55-59. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901009.htmLIU S J, PAN Y, LIU W D. Experimental study on the combustion and flow process in a scramjet with strut injector[J].Journal of Aerospace Power, 2009, 24(1):55-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901009.htm [4] FREEBORN A B, KING P I, GRUBER M R. Gruberl characterization of pylon effects on a scramjet cavity flameholder flowfield:AIAA-2008-86[R].Reston:AIAA, 2008. [5] FREEBORN A B, KING P I, GRUBER M R. Leading edge pylon effects on a scramjet pylon-cavity flameholder flowfield:AIAA-2008-4709[R].Reston:AIAA, 2008. [6] FREEBORN A B, KING P I, GRUBER M R. Swept-leading-edge pylon effects on a scramjet pylon-cavity flameholder flowfield[J].Journal of Propulsion and Power, 2009, 25(3):571-582. doi: 10.2514/1.39546 [7] PITZ R W, CARTER C D.Supersonic flow over a ramped-wall cavity flame holder with an upstream strut[J]. Journal of Propulsion and Power, 2012, 28(5):982-990. doi: 10.2514/1.B34394 [8] ZHAO Y, LIANG J, ZHAO Y. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder[J]. Acta Astronautica, 2016, 121:282-291. doi: 10.1016/j.actaastro.2015.12.040 [9] HSU K Y, CARTER C D, GRUBER M R, et al. Experimental study of cavity-strut combustion in supersonic flow[J]. Journal of Propulsion and Power, 2007, 26(6):1237-1246. https://www.researchgate.net/publication/235184921_Experimental_Study_of_Cavity-Strut_Combustion_in_Supersonic_Flow [10] GHODKE C D, CHOI J J, SRINIVASAN S, et al. Large eddy simulation of supersonic combustion in a cavity-strut flameholder[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston:AIAA, 2011. [11] 俞刚, 李建国.氢/空气超声速燃烧研究[J].流体力学实验与测量, 1999, 13(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC901.000.htmYU G, LI J G.Studies on hydrogen/air supersonic combustion[J].Experiments and Measurements in Fluid Mechanics, 1999, 13(1):1-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC901.000.htm [12] TOMIOKA S, MURAKAMI A, KUDO K, et al. Combustion tests of a staged supersonic combustor with a strut[J].Journal of Propulsion and Power, 2001, 17(2):293-300. doi: 10.2514/2.5741 [13] TOMIOKA S, KAN K, KUDO K, et al.Effects of injection configuration on performance of a staged supersonic combustor[J]. Journal of Propulsion and Power, 2003, 19(5):876-884. doi: 10.2514/2.6178 [14] TOMIOKA S, KAN K, KUDO K, et al.Distributed fuel injection for performance improvement of staged supersonic combustor[J]. Journal of Propulsion and Power, 2005, 21(4):760-763. doi: 10.2514/1.6172 [15] UEDA S, TOMIOKA S, ONO F, et al. Mach 6 test of a scramjet engine with multi-staged fuel injection[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2006. [16] HOU L, WEIGAND B, BANICA M.Effects of staged injection on supersonic mixing and combustion[J].Chinese Journal of Aeronautics, 2011, 24(5):584-589. doi: 10.1016/S1000-9361(11)60068-X [17] ABU-FARAH L, HAIDN O J, KAU H P. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor[J]. Propulsion & Power Research, 2015, 2(4):175-186. http://www.sciencedirect.com/science/article/pii/S2212540X1400073X [18] YANG Q, CHETEHOUNA K, GASCOIN N, et al. Experimental study on combustion modes and thrust performance of a staged-combustor of the scramjet with dual-strut[J].Acta Astronautica, 2016, 122:28-34. doi: 10.1016/j.actaastro.2016.01.002 [19] 范学军, 仲峰泉, 王晶, 等. 双路喷注超临界态煤油的超燃特性研究[C]//第一届高超声速科技学术会议论文集. 丽江: 中国力学学会, 2008: 177-183.FAN X J, ZHONG F Q, WANG J, et al.Performance of supersonic model combustors with twostaged supercritical kerosene injection[C]//The 1st National Conference on Hypersonic Technology. Lijiang: The Chinese Society of Theoretical and Applied Mechanics, 2008:177-183(in Chinese). [20] ZHANG T C, YUAN Y M, LI J G, et al.Characteristics of a supersonic model combustor with two-staged injections of supercritical kerosene[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston:AIAA, 2012. [21] 王建臣, 林宇震, 郭新华, 等.纯净空气来流下支板凹腔耦合超燃燃烧室性能研究[J].推进技术, 2015, 36(12):1868-1873. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201512016.htmWANG J C, LIN Y Z, GUO X H, et al. Experimental investigation of performance of a strut-cavity based scramjet combustor in clean air [J]. Journal of Propulsion Technology, 2015, 36(12):1868-1873(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201512016.htm [22] 赵永胜, 林宇震, 王建臣, 等.支板/凹腔超声速燃烧室总压损失特性研究[J].推进技术, 2016, 37(2):339-345. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201602019.htmZHAO Y S, LIN Y Z, WANG J C, et al. Total pressure loss characteristics in a strut-cavity based scramjet combustor[J]. Journal of Propulsion Technology, 2016, 37(2):339-345(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201602019.htm [23] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M].Reston:AIAA, 1994:52-82. [24] 王建臣. 超声速燃烧中支板凹腔稳焰技术研究[D]. 北京: 北京航空航天大学, 2015: 117-124.WANG J C.Studies on flameholding technology of strut-cavity flameholders in supersonic combustion[D].Beijing:Beihang University, 2015:117-124(in Chinese). [25] 黄勇, 林宇震, 樊未军, 等.燃烧与燃烧室[M].北京:北京航空航天大学出版社, 2009:239-240.HUANG Y, LIN Y Z, FAN W J, et al.Combustion and combustor[M].Beijing:Beihang University Press, 2009:239-240 (in Chinese).