-
摘要:
腐蚀环境下的裂纹扩展性能是航空金属结构损伤容限设计的重要前提,为此,试验测定了3种航空铝合金材料(即2E12-T3、2E12-T42和7050-T7451) 在2种腐蚀环境(3.5wt% NaCl溶液和油箱积水)下的裂纹扩展性能,在试验数据的基础上进行性能对比,并对试样断口进行SEM分析,研究了腐蚀和载荷联合作用对裂纹扩展的影响机理,研究结果表明:油箱积水环境对航空铝合金材料裂纹扩展的影响比3.5wt% NaCl溶液严重,铝合金2E12-T3和2E12-T42的腐蚀裂纹扩展性能优于铝合金7050-T7451,腐蚀环境下的氢脆效应和阳极溶解机制是造成腐蚀裂纹扩展加速的主要原因。
Abstract:Fatigue crack propagation behavior in typical corrosion environments is the precondition of damage tolerance design for metallic structures in aircraft; therefore, in order to determine corrosion fatigue crack propagation behavior, fatigue tests were performed on three categories of aluminum alloys (i.e., 2E12-T3, 2E12-T42 and 7050-T7451) in two kinds of corrosion environments (3.5wt% NaCl solution and fuel tank ponding) under constant amplitude loading. Corrosion fatigue crack propagation properties in different corrosion environments were analyzed and compared with each other, and the interaction mechanisms between corrosion and fatigue were deduced from fractographic studies by using SEM analysis. It is showed that the effect of fuel tank ponding on fatigue crack propagation behavior is more significant than that of 3.5wt% NaCl solution, and aluminum alloys 2E12-T3 and 2E12-T42 hold superiority over aluminum alloy 7050-T7451 in corrosion fatigue crack propagation behavior. Corrosion crack propagation is enhanced due to the hydrogen embrittlement effect and anodic dissolution mechanism.
-
Key words:
- aluminum alloy /
- crack propagation /
- fatigue /
- corrosion /
- SEM
-
表 1 铝合金的力学性能
Table 1. Mechanical properties of aluminum alloys
材料 E/GPa σb/MPa σs/MPa δ/% 2E12-T3 72.4 473 364 18.0 2E12-T42 70.0 472 421 9.5 7050-T7451 70.3 510 455 9.0 表 2 裂纹扩展da/dN-ΔK参数值
Table 2. Parameter values of crack propagation da/dN-ΔK
材料 环境 C/(mm·次-1) m 2E12-T3 3.5wt%NaCl溶液 5.53×10-10 4.62 油箱积水 4.43×10-9 3.95 2E12-T42 3.5wt%NaCl溶液 9.04×10-12 5.87 油箱积水 5.02×10-9 3.95 7050-T7451 3.5wt%NaCl溶液 2.19×10-8 4.41 油箱积水 4.71×10-8 4.09 -
[1] 王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社, 2001:2-6.WANG R.Corrosion fatigue of metal material[M]. Xi'an:Northwestern Polytechnical University Press, 2001:2-6(in Chinese). [2] 穆志韬, 李旭东, 刘治国.飞机结构材料环境腐蚀与疲劳分析[M].北京:国防工业出版社, 2014:3-6.MU Z T, LI X D, LIU Z G.Environment corrosion and fatigue analysis on aircraft structure material[M]. Beijing:National Defence Industry Press, 2014:3-6(in Chinese). [3] SHEKHTER A, CRAWFORD B R, LOADER C, et al. The effect of pitting corrosion on the safe-life prediction of the royal Australian air force P-3C Orion aircraft[J]. Engineering Failure Analysis, 2015, 55:193-207. doi: 10.1016/j.engfailanal.2015.05.020 [4] LIN C K, YANG S T. Corrosion fatigue behavior of 7050 aluminum alloys in different tempers[J]. Engineering Fracture Mechanics, 1998, 59(6):779-795. doi: 10.1016/S0013-7944(97)00173-2 [5] JONES K, HOEPPNER D W.Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Science, 2006, 48(10):3109-3122. doi: 10.1016/j.corsci.2005.11.008 [6] MAKHLOUF K, SDHOM H, TRIGUIA I, et al.Corrosion fatigue crack propagation of a duplex stainless steel X6 Cr Ni Mo Cu 25-6 in air and in artificial sea water[J]. International Journal of Fatigue, 2003, 25(2): 167-179. doi: 10.1016/S0142-1123(02)00046-4 [7] ZHAO W, WANG Y, ZHANG T, et al.Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel[J]. Corrosion Science, 2012, 57:99-103. doi: 10.1016/j.corsci.2011.12.029 [8] WANG R, ZHENG X.Corrosion fatigue crack propagation of an aluminum alloy under periodic overloads[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(5):389-398. [9] MENAN F, HENAFF G.Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation[J]. Materials Science and Engineering, 2009, 519(1):70-76. [10] 黄小光, 王黎明, 曹宇光.LY12CZ铝合金在人工海水中的腐蚀疲劳裂纹扩展行为[J].机械工程材料, 2015, 39(6): 95-98. doi: 10.11973/jxgccl201506019HUANG X G, WANG L M, CAO Y G.Corrosion fatigue crack growth behavior of LY12CZ aluminum alloy in atificial seawater[J]. Materials for Mechanical Engineering, 2015, 39(6):95-98(in Chinese). doi: 10.11973/jxgccl201506019 [11] MENG X, LIN Z, WANG F.Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy[J]. Materials and Design, 2013, 51:683-687. doi: 10.1016/j.matdes.2013.04.097 [12] XIANG Y, LIU Y.EIFS-based crack growth fatigue life prediction of pitting-corroded test specimens[J]. Engineering Fracture Mechanics, 2010, 77(8):1314-1324. doi: 10.1016/j.engfracmech.2010.03.018 [13] 李旭东, 孔光明, 穆志韬.穿透型疲劳裂纹扩展与铝合金局部点蚀损伤特征参数的依存性分析[J].腐蚀与防护, 2015, 36(11):1049-1052. doi: 10.11973/fsyfh-201511008LI X D, KONG G M, MU Z T.Dependent analysis of through out crack propagation on localiazed pitting corrosion parameters of aluminum alloy[J]. Corrosion & Protection, 2015, 36(11):1049-1052(in Chinese). doi: 10.11973/fsyfh-201511008 [14] ASTM International. Standard test method for measurement of fatigue crack propagation rates:ASTM E647-11[S]. West Conshohocken, PA: ASTM International, 2011. [15] 杨胜, 易丹青, 杨守杰, 等.腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究[J].材料工程, 2007(12):26-29. doi: 10.3969/j.issn.1001-4381.2007.12.006YANG S, YI D Q, YANG S J, et al.Effect of corrosive environment on fatigue crack propagation of 2E12 aerospace aluminum alloy[J]. Journal of Materials Engineering, 2007(12):26-29(in Chinese). doi: 10.3969/j.issn.1001-4381.2007.12.006 [16] PERKINS K M, BACHE M R.Corrosion fatigue of a 12% Cr low pressure turbine blade steel in simulated service environments[J]. International Journal of Fatigue, 2005, 27(10):1499-1508. [17] 邓斌, 易丹青, 杨胜, 等.2E12铝合金加速腐蚀环境谱下的疲劳裂纹扩展[J].材料科学与工程学报, 2009, 27(5):770-773. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKX200905031.htmDENG B, YI D Q, YANG S, et al.Effect of accelerated corrosive environment spectrum on fatigue crack growth of 2E12 aluminum alloy[J]. Journal of Materials Science and Engineering, 2009, 27(5):770-773(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLKX200905031.htm [18] YAMABE J, MATSUMOTO T, MATSUOK S, et al.A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel[J]. International Journal of Fracture, 2012, 177(2):141-162. doi: 10.1007/s10704-012-9760-9 [19] 朱绒霞, 杜会玲.航空燃料系统铝合金的微生物腐蚀[J].石油化工腐蚀与防护, 2002, 19(2):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-SWFS200202009.htmZHU R X, DU H L. Microbial corrosion of aluminum alloy in jet fuel system[J]. Petrochemical Corrosion and Protection, 2002, 19(2):28-29(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SWFS200202009.htm [20] 李晨钰, 朱立群, 刘慧丛, 等.温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响[J].航空学报, 2013, 34(6):1493-1500. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201306030.htmLI C Y, ZHU L Q, LIU H C, et al. Influence of temperature on initial corrosion behavior of aluminium alloy 2A12 in simulated tank water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1493-1500(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201306030.htm [21] KIMBERLI J, DAVID W H.The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy[J]. International Journal of Fatigue, 2009, 31(4):686-692. doi: 10.1016/j.ijfatigue.2008.03.016 [22] 宫玉辉, 刘铭, 张坤, 等.不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J].材料工程, 2010(9):71-73. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201009017.htmGONG Y H, LIU M, ZHANG K, et al.Effects of different corrosion environments on fatigue property and crack growth rate in 7475-T7351 aluminum alloy[J]. Journal of Materials Engineering, 2010(9):71-73(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201009017.htm [23] AYDIN M, SAVASKAN T.Fatigue properties of zinc-aluminum alloys in 3.5wt%NaCl and 1%HCl solutions[J]. International Journal of Fatigue, 2004, 26(1):103-110. doi: 10.1016/S0142-1123(03)00091-4