留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空铝合金材料腐蚀裂纹扩展性能试验

王池权 熊峻江 马少俊 陈勃

王池权, 熊峻江, 马少俊, 等 . 航空铝合金材料腐蚀裂纹扩展性能试验[J]. 北京航空航天大学学报, 2017, 43(5): 935-941. doi: 10.13700/j.bh.1001-5965.2016.0360
引用本文: 王池权, 熊峻江, 马少俊, 等 . 航空铝合金材料腐蚀裂纹扩展性能试验[J]. 北京航空航天大学学报, 2017, 43(5): 935-941. doi: 10.13700/j.bh.1001-5965.2016.0360
WANG Chiquan, XIONG Junjiang, MA Shaojun, et al. Tests for corrosion crack propagation behavior of aeronautical aluminum alloys[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 935-941. doi: 10.13700/j.bh.1001-5965.2016.0360(in Chinese)
Citation: WANG Chiquan, XIONG Junjiang, MA Shaojun, et al. Tests for corrosion crack propagation behavior of aeronautical aluminum alloys[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 935-941. doi: 10.13700/j.bh.1001-5965.2016.0360(in Chinese)

航空铝合金材料腐蚀裂纹扩展性能试验

doi: 10.13700/j.bh.1001-5965.2016.0360
基金项目: 

国家自然科学基金 51375033

详细信息
    作者简介:

    王池权, 男, 博士研究生。主要研究方向:航空金属结构材料腐蚀疲劳及裂纹扩展性能

    熊峻江, 男, 博士, 教授, 博士生导师。主要研究方向:飞机结构适航性、飞行器系统与结构效能评估

    通讯作者:

    熊峻江,E-mail:jjxiong@buaa.edu.cn

  • 中图分类号: V252.2;TG113.1;TG115.5

Tests for corrosion crack propagation behavior of aeronautical aluminum alloys

Funds: 

National Natural Science Foundation of China 51375033

More Information
  • 摘要:

    腐蚀环境下的裂纹扩展性能是航空金属结构损伤容限设计的重要前提,为此,试验测定了3种航空铝合金材料(即2E12-T3、2E12-T42和7050-T7451) 在2种腐蚀环境(3.5wt% NaCl溶液和油箱积水)下的裂纹扩展性能,在试验数据的基础上进行性能对比,并对试样断口进行SEM分析,研究了腐蚀和载荷联合作用对裂纹扩展的影响机理,研究结果表明:油箱积水环境对航空铝合金材料裂纹扩展的影响比3.5wt% NaCl溶液严重,铝合金2E12-T3和2E12-T42的腐蚀裂纹扩展性能优于铝合金7050-T7451,腐蚀环境下的氢脆效应和阳极溶解机制是造成腐蚀裂纹扩展加速的主要原因。

     

  • 图 1  标准M(T)试样

    Figure 1.  Standard M(T) specimen

    图 2  裂纹扩展测试

    Figure 2.  Crack propagation test

    图 3  2E12-T3铝合金断口分析

    Figure 3.  Fractographic analysis of 2E12-T3 aluminum alloy

    图 4  7050-T7451铝合金断口分析

    Figure 4.  Fractographic analysis of 7050-T7451 aluminum alloy

    图 5  裂纹扩展da/dNK

    Figure 5.  Crack propagation da/dNK curves

    图 6  不同航空铝合金扩展速率对比

    Figure 6.  Comparison of propagation rates among different aeronautical aluminum alloys

    表  1  铝合金的力学性能

    Table  1.   Mechanical properties of aluminum alloys

    材料 E/GPa σb/MPa σs/MPa δ/%
    2E12-T3 72.4 473 364 18.0
    2E12-T42 70.0 472 421 9.5
    7050-T7451 70.3 510 455 9.0
    下载: 导出CSV

    表  2  裂纹扩展da/dNK参数值

    Table  2.   Parameter values of crack propagation da/dNK

    材料 环境 C/(mm·次-1) m
    2E12-T3 3.5wt%NaCl溶液 5.53×10-10 4.62
    油箱积水 4.43×10-9 3.95
    2E12-T42 3.5wt%NaCl溶液 9.04×10-12 5.87
    油箱积水 5.02×10-9 3.95
    7050-T7451 3.5wt%NaCl溶液 2.19×10-8 4.41
    油箱积水 4.71×10-8 4.09
    下载: 导出CSV
  • [1] 王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社, 2001:2-6.

    WANG R.Corrosion fatigue of metal material[M]. Xi'an:Northwestern Polytechnical University Press, 2001:2-6(in Chinese).
    [2] 穆志韬, 李旭东, 刘治国.飞机结构材料环境腐蚀与疲劳分析[M].北京:国防工业出版社, 2014:3-6.

    MU Z T, LI X D, LIU Z G.Environment corrosion and fatigue analysis on aircraft structure material[M]. Beijing:National Defence Industry Press, 2014:3-6(in Chinese).
    [3] SHEKHTER A, CRAWFORD B R, LOADER C, et al. The effect of pitting corrosion on the safe-life prediction of the royal Australian air force P-3C Orion aircraft[J]. Engineering Failure Analysis, 2015, 55:193-207. doi: 10.1016/j.engfailanal.2015.05.020
    [4] LIN C K, YANG S T. Corrosion fatigue behavior of 7050 aluminum alloys in different tempers[J]. Engineering Fracture Mechanics, 1998, 59(6):779-795. doi: 10.1016/S0013-7944(97)00173-2
    [5] JONES K, HOEPPNER D W.Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Science, 2006, 48(10):3109-3122. doi: 10.1016/j.corsci.2005.11.008
    [6] MAKHLOUF K, SDHOM H, TRIGUIA I, et al.Corrosion fatigue crack propagation of a duplex stainless steel X6 Cr Ni Mo Cu 25-6 in air and in artificial sea water[J]. International Journal of Fatigue, 2003, 25(2): 167-179. doi: 10.1016/S0142-1123(02)00046-4
    [7] ZHAO W, WANG Y, ZHANG T, et al.Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel[J]. Corrosion Science, 2012, 57:99-103. doi: 10.1016/j.corsci.2011.12.029
    [8] WANG R, ZHENG X.Corrosion fatigue crack propagation of an aluminum alloy under periodic overloads[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(5):389-398.
    [9] MENAN F, HENAFF G.Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation[J]. Materials Science and Engineering, 2009, 519(1):70-76.
    [10] 黄小光, 王黎明, 曹宇光.LY12CZ铝合金在人工海水中的腐蚀疲劳裂纹扩展行为[J].机械工程材料, 2015, 39(6): 95-98. doi: 10.11973/jxgccl201506019

    HUANG X G, WANG L M, CAO Y G.Corrosion fatigue crack growth behavior of LY12CZ aluminum alloy in atificial seawater[J]. Materials for Mechanical Engineering, 2015, 39(6):95-98(in Chinese). doi: 10.11973/jxgccl201506019
    [11] MENG X, LIN Z, WANG F.Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy[J]. Materials and Design, 2013, 51:683-687. doi: 10.1016/j.matdes.2013.04.097
    [12] XIANG Y, LIU Y.EIFS-based crack growth fatigue life prediction of pitting-corroded test specimens[J]. Engineering Fracture Mechanics, 2010, 77(8):1314-1324. doi: 10.1016/j.engfracmech.2010.03.018
    [13] 李旭东, 孔光明, 穆志韬.穿透型疲劳裂纹扩展与铝合金局部点蚀损伤特征参数的依存性分析[J].腐蚀与防护, 2015, 36(11):1049-1052. doi: 10.11973/fsyfh-201511008

    LI X D, KONG G M, MU Z T.Dependent analysis of through out crack propagation on localiazed pitting corrosion parameters of aluminum alloy[J]. Corrosion & Protection, 2015, 36(11):1049-1052(in Chinese). doi: 10.11973/fsyfh-201511008
    [14] ASTM International. Standard test method for measurement of fatigue crack propagation rates:ASTM E647-11[S]. West Conshohocken, PA: ASTM International, 2011.
    [15] 杨胜, 易丹青, 杨守杰, 等.腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究[J].材料工程, 2007(12):26-29. doi: 10.3969/j.issn.1001-4381.2007.12.006

    YANG S, YI D Q, YANG S J, et al.Effect of corrosive environment on fatigue crack propagation of 2E12 aerospace aluminum alloy[J]. Journal of Materials Engineering, 2007(12):26-29(in Chinese). doi: 10.3969/j.issn.1001-4381.2007.12.006
    [16] PERKINS K M, BACHE M R.Corrosion fatigue of a 12% Cr low pressure turbine blade steel in simulated service environments[J]. International Journal of Fatigue, 2005, 27(10):1499-1508.
    [17] 邓斌, 易丹青, 杨胜, 等.2E12铝合金加速腐蚀环境谱下的疲劳裂纹扩展[J].材料科学与工程学报, 2009, 27(5):770-773. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKX200905031.htm

    DENG B, YI D Q, YANG S, et al.Effect of accelerated corrosive environment spectrum on fatigue crack growth of 2E12 aluminum alloy[J]. Journal of Materials Science and Engineering, 2009, 27(5):770-773(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLKX200905031.htm
    [18] YAMABE J, MATSUMOTO T, MATSUOK S, et al.A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel[J]. International Journal of Fracture, 2012, 177(2):141-162. doi: 10.1007/s10704-012-9760-9
    [19] 朱绒霞, 杜会玲.航空燃料系统铝合金的微生物腐蚀[J].石油化工腐蚀与防护, 2002, 19(2):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-SWFS200202009.htm

    ZHU R X, DU H L. Microbial corrosion of aluminum alloy in jet fuel system[J]. Petrochemical Corrosion and Protection, 2002, 19(2):28-29(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SWFS200202009.htm
    [20] 李晨钰, 朱立群, 刘慧丛, 等.温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响[J].航空学报, 2013, 34(6):1493-1500. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201306030.htm

    LI C Y, ZHU L Q, LIU H C, et al. Influence of temperature on initial corrosion behavior of aluminium alloy 2A12 in simulated tank water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1493-1500(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201306030.htm
    [21] KIMBERLI J, DAVID W H.The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy[J]. International Journal of Fatigue, 2009, 31(4):686-692. doi: 10.1016/j.ijfatigue.2008.03.016
    [22] 宫玉辉, 刘铭, 张坤, 等.不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J].材料工程, 2010(9):71-73. http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201009017.htm

    GONG Y H, LIU M, ZHANG K, et al.Effects of different corrosion environments on fatigue property and crack growth rate in 7475-T7351 aluminum alloy[J]. Journal of Materials Engineering, 2010(9):71-73(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201009017.htm
    [23] AYDIN M, SAVASKAN T.Fatigue properties of zinc-aluminum alloys in 3.5wt%NaCl and 1%HCl solutions[J]. International Journal of Fatigue, 2004, 26(1):103-110. doi: 10.1016/S0142-1123(03)00091-4
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  87
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 录用日期:  2016-07-22
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答