留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群优化粒子滤波的接收机自主完好性监测

王尔申 曲萍萍 庞涛 蓝晓宇 陈佳美

王尔申, 曲萍萍, 庞涛, 等 . 粒子群优化粒子滤波的接收机自主完好性监测[J]. 北京航空航天大学学报, 2016, 42(12): 2572-2578. doi: 10.13700/j.bh.1001-5965.2016.0362
引用本文: 王尔申, 曲萍萍, 庞涛, 等 . 粒子群优化粒子滤波的接收机自主完好性监测[J]. 北京航空航天大学学报, 2016, 42(12): 2572-2578. doi: 10.13700/j.bh.1001-5965.2016.0362
WANG Ershen, QU Pingping, PANG Tao, et al. Receiver autonomous integrity monitoring based on particle swarm optimization particle filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2572-2578. doi: 10.13700/j.bh.1001-5965.2016.0362(in Chinese)
Citation: WANG Ershen, QU Pingping, PANG Tao, et al. Receiver autonomous integrity monitoring based on particle swarm optimization particle filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2572-2578. doi: 10.13700/j.bh.1001-5965.2016.0362(in Chinese)

粒子群优化粒子滤波的接收机自主完好性监测

doi: 10.13700/j.bh.1001-5965.2016.0362
基金项目: 

国家自然科学基金 61571309

国家自然科学基金 61101161

辽宁省“百千万人才工程” 

详细信息
    通讯作者:

    王尔申, 男, 博士, 副教授。主要研究方向:卫星导航、航空电子。Tel.:024-89723755, E-mail:wanges_2016@126.com

  • 中图分类号: V241.6;TN967.1

Receiver autonomous integrity monitoring based on particle swarm optimization particle filter

Funds: 

National Natural Science Foundation of China 61571309

National Natural Science Foundation of China 61101161

Liaoning BaiQianWan Talents Program 

More Information
  • 摘要:

    接收机自主完好性监测(RAIM)是航空卫星导航接收机必不可少的功能,为保持全球卫星导航系统(GNSS)在卫星发生故障时系统性能不降级,需要对卫星故障进行检测和隔离。针对接收机观测噪声非高斯分布的特点,提出一种基于粒子群优化粒子滤波(PSO-PF)的故障检测和隔离算法。通过粒子群优化粒子滤波对状态估计进行一致性检验实现故障检测。采集实测数据验证算法的检测性能,并与基于基本粒子滤波的完好性监测算法进行比较,结果表明:本文所提算法在非高斯测量噪声下可检测并隔离全球定位系统(GPS)故障卫星,其性能优于基于基本粒子滤波的完好性监测算法性能,对研究北斗卫星导航系统(BDS)接收机自主完好性监测具有一定的意义。

     

  • 图 1  PSO-PF RAIM原理框图

    Figure 1.  Principle block diagram of RAIM based on PSO-PF

    图 2  偏差为15 m时累加LLR值和故障检测判决函数比较

    Figure 2.  Cumulative LLR and comparison of decision function for fault detection under 15 m step failure

    图 3  偏差为20 m时累加LLR值和故障检测判决函数比较

    Figure 3.  Cumulative LLR and comparison of decision function for fault detection under 20 m step failure

    图 4  偏差为30 m时累加LLR值和故障检测判决函数比较

    Figure 4.  Cumulative LLR and comparison of decision function for fault detection under 30 m step failure

    表  1  PSO-PF RAIM算法和PF RAIM算法的故障检测告警时刻比较

    Table  1.   Comparison of alarm time for fault detection for PSO-PF RAIM algorithm and PF RAIM algorithm

    伪距偏差/m 告警时刻/s
    PSO-PF RAIM算法 PF RAIM算法
    15 510 518
    20 505 514
    30 505 509
    下载: 导出CSV

    表  2  不同偏差下PSO-PF RAIM算法和PF RAIM算法的平均有效粒子数(N=50)

    Table  2.   Average effective number of particles under different bias for PSO-PF RAIM algorithm and PF RAIM algorithm (N=50)

    伪距偏差/m 平均有效粒子数
    PSO-PF RAIM算法 PF RAIM算法
    15 43.8 42.1
    20 44.7 42.0
    30 44.6 42.8
    下载: 导出CSV
  • [1] JOERGER M, CHAN F C, LANGEL S, et al.RAIM detector and estimator design to minimize the integrity risk[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington, D.C.:ION, 2012:2785-2807.
    [2] BINJAMMAZ T, AL-BAYATTI A, AL-HARGAN A.GPS integrity monitoring for an intelligent transport system[C]//Proceedings of the 10th Workshop on Positioning Navigation and Communication.Piscataway, NJ:IEEE Press, 2013:1-6.
    [3] BROCARD P, JULIEN O, MABILLEAU M.Autonomous integrity monitoring proposal for critical rail applications[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington, D.C.:ION, 2015:706-734.
    [4] 徐肖豪, 杨传森, 刘瑞华.GNSS用户端自主完好性监测研究综述[J].航空学报, 2013, 34(3):451-463.

    XU X H, YANG C S, LIU R H.Review and prospect of GNSS receiver autonomous integrity monitoring[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(3):451-463(in Chinese).
    [5] 孙国良, 孙明菡, 陈金平.时-集综合的接收机自主完好性监测方法研究[J].航空学报, 2006, 27(6):1171-1175.

    SUN G L, SUN M H, CHEN J P.A study on time and set combined method for receiver integrity autonomous monitoring[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1171-1175(in Chinese).
    [6] 卢德兼, 陈秀万.GNSS系统接收机自主完好性监测算法[J].计算机工程, 2009, 35(11):10-12.

    LU D J, CHEN X W.Algorithm for global navigation satellite system receiver autonomous integrity monitoring[J].Computer Engineering, 2009, 35(11):10-12(in Chinese).
    [7] JOERGER M, PERVAN B.Integrity risk of Kalman filter-based RAIM[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington, D.C.:ION, 2011:3856-3867.
    [8] SAYIM B, PERVAN S, PULLEN P, et al.Experimental and theoretical results on the LAAS Sigma overbound[C]//Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington, D.C.:ION, 2002:29-38.
    [9] YUN Y, KIM D.Integrity monitoring algorithms using filtering approaches for higher navigation performance:Consideration of the non-Gaussian GNSS measurements[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington, D.C.:ION, 2007:3070-3081.
    [10] GUSTAFSSON F, GUNNARSSON F, BERGMAN N, et al.Particle filters for positioning, navigation, and tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2):425-437. doi: 10.1109/78.978396
    [11] DOUCET A, GODSILL S, ANDRIEU C.On sequential Monte Carlo sampling method for Bayesian filtering[J].Statistics and Computing, 2000, 10(3):197-208. doi: 10.1023/A:1008935410038
    [12] ARULAMPALAM M S, MASKELL S, GORDON N, et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2):174-188. doi: 10.1109/78.978374
    [13] 王尔申, 庞涛, 曲萍萍, 等.基于混沌的改进粒子群优化粒子滤波算法[J].北京航空航天大学学报, 2016, 42(5):885-890. http://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml

    WANG E S, PANG T, QU P P, et al.Improved particle filter algorithm based on chaos particle swarm optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):885-890(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13752.shtml
    [14] 方正, 佟国峰, 徐心和.基于粒子群优化的粒子滤波定位方法[J].控制理论与应用, 2008, 25(3):533-537. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200803028.htm

    FANG Z, TONG G F, XU X H.A localization method for particle-filter based on the optimization of particle swarm[J].Control Theory and Application, 2008, 25(3):533-537(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200803028.htm
    [15] ROSIHAN, INDRIYATMOKO A, CHUN S, et al.Particle filtering approach to fault detection and isolation for GPS integrity monitoring[C]//Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation.Washington D.C.:ION, 2006:873-881.
    [16] KAPLAN E, HEGARTY C.Understanding GPS:Principles and application[M].2nd ed.London:Artech House, 2006:39-45.
    [17] 王尔申, 张淑芳, 蔡明, 等.遗传粒子滤波的GPS接收机自主完好性监测[J].西安电子科技大学学报(自然科学版), 2015, 42(1):136-141. http://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201501023.htm

    WANG E S, ZHANG S F, CAI M, et al.GPS receiver autonomous integrity monitoring algorithm using the genetic particle filter[J].Journal of Xidian University (Natural Science), 2015, 42(1):136-141(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201501023.htm
    [18] KADIRKANATHAN V, LI P, JAWARD M H, et al.Particle filtering based fault detection in non-linear stochastic systems[J].International Journal of Systems Science, 2002, 33(4):259-265. doi: 10.1080/00207720110102566
    [19] WEI T, HUANG Y, CHEN C L P.Adaptive sensor fault detection and identification using particle filter algorithms[J].IEEE Transactions on Systems, Man, and Cybernetics.Part C-Applications and Reviews, 2009, 39(2):201-213. doi: 10.1109/TSMCC.2008.2006759
    [20] LI P, KADIRKAMANATHAN V.Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems[J].IEEE Transactions on Systems, Man, and Cybernetics.Part C-Applications and Reviews, 2001, 31(3):337-343. doi: 10.1109/5326.971661
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  755
  • HTML全文浏览量:  72
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 录用日期:  2016-07-22
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答