留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声行波驱动的玻璃表面液滴运动数值模拟

丘华川 姜立标

丘华川, 姜立标. 超声行波驱动的玻璃表面液滴运动数值模拟[J]. 北京航空航天大学学报, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395
引用本文: 丘华川, 姜立标. 超声行波驱动的玻璃表面液滴运动数值模拟[J]. 北京航空航天大学学报, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395
QIU Huachuan, JIANG Libiao. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395(in Chinese)
Citation: QIU Huachuan, JIANG Libiao. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. doi: 10.13700/j.bh.1001-5965.2016.0395(in Chinese)

超声行波驱动的玻璃表面液滴运动数值模拟

doi: 10.13700/j.bh.1001-5965.2016.0395
基金项目: 

国家自然科学基金 51275175

广东省自然科学基金 2014A030313254

详细信息
    作者简介:

    丘华川, 男, 硕士研究生。主要研究方向:汽车前风挡玻璃超声振动除水

    姜立标, 男, 博士, 副教授。主要研究方向:汽车前风挡玻璃超声振动除水、车辆系统动力学与电子控制

    通讯作者:

    姜立标, E-mail:jlb@scut.edu.cn

  • 中图分类号: O359;TB552;O323

Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave

Funds: 

National Natural Science Foundation of China 51275175

Natural Science Foundation of Guangdong Province 2014A030313254

More Information
  • 摘要:

    针对液滴铺展和移动的动力学行为在工业生产和微流控芯片等领域有着重要作用,提出了一种基于超声行波理论的弹性体平板驱动模型,利用压电陶瓷的逆压电效应在弹性体玻璃产生超声行波从而驱动液滴运动。借助多物理场软件COMSOL建立液滴模型,首先进行行波分析,验证了驱动液滴的可行性。在0~60 ms中,液滴在超声行波的驱动下进行收缩-铺展的正弦振荡运动。然后通过液滴内部流场结构分析发现,当液滴半径铺展到最大后开始收缩时,液滴与基底接触面处的速度首先发生变化,表明液滴内部速度场的变化对接触线是否发生移动有着重要作用。液滴内部流场存在一个类似于椭圆形的漩涡,说明液滴运动不是单纯由于收缩-铺展而引起的平动,而是滚动着朝前运动。最后分别探讨了液滴移动速度与驱动电压、驱动频率以及动力黏度的关系,结果表明液滴移动速度受动力黏度影响较为显著。

     

  • 图 1  液滴在水平固体表面上的接触角与表面张力

    Figure 1.  Contact angle and surface tensions of a droplet on horizontal solid surface

    图 2  弹性体平板模型产生超声行波

    Figure 2.  Elastic planar model used to generate ultrasonic travelling wave

    图 3  产生超声行波的结构简图

    Figure 3.  Structure diagram of generating ultrasonic travelling wave

    图 4  质点的椭圆运动轨迹

    Figure 4.  Elliptical motion trail of particle

    图 5  行波瞬时状态

    Figure 5.  Transient state of travelling wave

    图 6  添加域点探针

    Figure 6.  Adding domain point probe

    图 7  液滴内部两点沿x方向的速度

    Figure 7.  Velocity of two points inside droplet along x direction

    图 8  不同时刻下的液滴运动状态

    Figure 8.  Droplet motion state at different moments

    图 9  不同时刻下液滴的流场

    Figure 9.  Flow field of droplet at different moments

    图 10  液滴流线图(t=5s)

    Figure 10.  Streamline of droplet (t=5s)

    图 11  液滴移动速度随驱动电压的变化

    Figure 11.  Variation of droplet moving velocity with driving voltage

    图 12  液滴移动速度随驱动频率的变化

    Figure 12.  Variation of droplet moving velocity with driving frequency

    图 13  压电振子的阻抗频率响应曲线

    Figure 13.  Impedance frequency response curve of piezoelectric vibrator

    图 14  液滴移动速度随动力黏度的变化

    Figure 14.  Variation of moving velocity of droplet with dynamic viscosity

    图 15  液滴运动实验结果

    Figure 15.  Experimental results of droplet motion

    表  1  几何模型的结构参数

    Table  1.   Structure parameters of geometric model

    类型 长度/mm 厚度/mm
    玻璃平板 150 3
    压电陶瓷 5π/4 1
    下载: 导出CSV

    表  2  玻璃的材料参数

    Table  2.   Material parameters of glass

    参数 弹性模量/Pa 密度/(kg·m-3) 泊松比
    数值 7×1010 2 210 0.24
    下载: 导出CSV

    表  3  质点的瞬时位移

    Table  3.   Instantaneous displacement of particle

    时间/ms x方向位移/nm z方向位移/nm
    30.085880 3.654254 35.945566
    30.086332 37.307580 42.905864
    30.086784 56.858371 35.665642
    30.087236 55.340976 17.141958
    30.087688 33.690540 -5.537054
    30.088140 0.086644 -24.081458
    30.088592 -33.196754 -32.023728
    30.089044 -54.042325 -26.239285
    30.089496 -54.650676 -7.623552
    30.089948 -34.476498 18.330271
    30.090400 -0.687655 42.223590
    下载: 导出CSV
  • [1] BECKER J, GRUN G.The thin-film equation:Recent advances and some new perspectives[J]. Journal of Physics Condensed Matter, 2005, 17(9):S291-S307. doi: 10.1088/0953-8984/17/9/002
    [2] SINGHAL V, GARIMELLA S V, RAMAN A.Microscale pumping technologies for microchannel cooling systems[J]. Applied Mechanics Reviews, 2004, 57(3):191. doi: 10.1115/1.1695401
    [3] 魏长智, 魏守水, 张冲.超声行波微流体驱动的流动特性分析[J].应用基础与工程科学学报, 2013, 21(1):97-106. http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301012.htm

    WEI C Z, WEI S S, ZHANG C.Flow characteristics analysis of ultrasonic traveling wave micro-fluid driving[J]. Journal of Basic Science and Engineering, 2013, 21(1):97-106 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301012.htm
    [4] SHI W, QIN J, YE N, et al.Droplet-based microfluidic system for individual Caenorhabditis elegans assay[J]. Lab on a Chip, 2008, 8(9):1432-1435. doi: 10.1039/b808753a
    [5] ABDELGAWAD M, WATSON M W, WHEELER A R.Hybrid microfluidics:A digital-to-channel interface for in-line sample processing and chemical separations[J]. Lab on a Chip, 2009, 9(8):1046-1051. doi: 10.1039/b820682a
    [6] YOUNG T.An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. doi: 10.1098/rstl.1805.0005
    [7] WENZEL R N.Resistance of solid surface to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
    [8] CASSIE A B D, BAXTER S.Wettability of porous surfaces[J]. Transactions of Faraday Society, 1944, 40:546-551. doi: 10.1039/tf9444000546
    [9] CHAUDHURY M K, WHITESIDES G M.How to make water run uphill[J]. Science, 1992, 256(5063):1939-1541. https://www.ncbi.nlm.nih.gov/pubmed/17836321
    [10] DANIEL S, CHAUDHURY M K.Rectified motion of liquid drops on gradient surfaces induced by vibration[J]. Langmuir, 2002, 18(9):3404-3407. doi: 10.1021/la025505c
    [11] DANIEL S, SIRCAR S, GLIEM J, et al.Ratcheting motion of liquid drops on gradient surfaces[J]. Langmuir, 2004, 20(10):4085-4092. doi: 10.1021/la036221a
    [12] 王晓东, 彭晓峰, 陆建峰, 等.粗糙表面接触角滞后现象分析[J].热科学与技术, 2003, 2(3):230-234. http://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200303008.htm

    WANG X D, PENG X F, LU J F, et al.Analysis of contact angle hysteresis on rough surfaces[J]. Journal of Thermal Science and Technology, 2003, 2(3):230-234(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200303008.htm
    [13] 石自媛, 胡国辉, 周哲玮.润湿性梯度驱动液滴运动的格子Bolzmann模拟[J].物理学报, 2010, 59(4):2595-2600. doi: 10.7498/aps.59.2595

    SHI Z Y, HU G H, ZHOU Z W.Lattice Boltzmann simulation of droplet motion driven by gradient of wettability[J]. Acta Physica Sinica, 2010, 59(4):2595-2600(in Chinese). doi: 10.7498/aps.59.2595
    [14] DAS A K, DAS P K.Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient[J]. Langmuir, 2010, 26(12):9547-9555. doi: 10.1021/la100145e
    [15] 周建臣, 耿兴国, 林可君, 等.微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变[J].物理学报, 2014, 63(21):216801. doi: 10.7498/aps.63.216801

    ZHOU J C, GENG X G, LIN K J, et al.Stick-slip transition of a water droplet vibrated on a superhydrophobic surface[J]. Acta Physica Sinica, 2014, 63(21):216801(in Chinese). doi: 10.7498/aps.63.216801
    [16] WALKER S W, SHAPIRO B.A control method for steering individual particles inside liquid droplets actuated by electrowetting[J]. Lab on a Chip, 2005, 5(12):1404-1407. doi: 10.1039/b513373b
    [17] WALKER S W, SHAPIRO B.Modeling the fluid dynamics of electrowetting on dielectric (EWOD)[J]. Journal of Microelectro-mechanical Systems, 2006, 15(4):986-1000. doi: 10.1109/JMEMS.2006.878876
    [18] WALKER S W, SHAPIRO B, NOCHETTO R H.Electrowetting with contact line pinning:Computational modeling and comparisons with experiments[J]. Physics of Fluids, 2009, 21(10):443-451.
    [19] LI F, MUGELE F.How to make sticky surface slippery:Contact angle hysteresis in electrowetting with alternating voltage[J]. Applied Physics Letters, 2008, 92(24):244108. doi: 10.1063/1.2945803
    [20] GAO Y, LI Y G, ZHANG J F.Two-dimensional actuation of liquid using surface acoustic wave[J]. Optics and Precision Engineering, 2009, 17(7):1548-1552.
    [21] BATCHELOR G K.An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press, 2000:73-79.
    [22] BAL G, BEKIROGLU E.Servo speed control of travelling-wave ultrasonic motor using digital signal processor[J]. Sensors and Actuators A:Physical, 2004, 109(3):212-219. doi: 10.1016/j.sna.2003.10.019
    [23] NETO C, EVANS D R, BONACCURSO E, et al.Boundary slip in Newtonian liquids:A review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12):2859-2897. doi: 10.1088/0034-4885/68/12/R05
    [24] BLAKE T D, HAYNES J M.Kinetics of liquid/liquid displacement[J]. Journal of Colloid and Interface Science, 1969, 30(3):421-423. doi: 10.1016/0021-9797(69)90411-1
    [25] LAMB H.Hydrodynamics[J]. Hydrodynamics New York Dover, 1932, 6(4):181-185.
    [26] DONG L, CHAUDHURY A, CHAUDHURY M K.Lateral vibration of water drop and its motion on a vibrating surface[J]. European Physical Journal E, 2006, 21(3):231-242. doi: 10.1140/epje/i2006-10063-7
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  83
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 录用日期:  2016-08-10
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答