留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCH模型的航天器姿态无源控制

王青 龚立纲 董朝阳

王青, 龚立纲, 董朝阳等 . 基于PCH模型的航天器姿态无源控制[J]. 北京航空航天大学学报, 2017, 43(6): 1061-1071. doi: 10.13700/j.bh.1001-5965.2016.0414
引用本文: 王青, 龚立纲, 董朝阳等 . 基于PCH模型的航天器姿态无源控制[J]. 北京航空航天大学学报, 2017, 43(6): 1061-1071. doi: 10.13700/j.bh.1001-5965.2016.0414
WANG Qing, GONG Ligang, DONG Chaoyanget al. Spacecraft attitude passivity control based on PCH model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1061-1071. doi: 10.13700/j.bh.1001-5965.2016.0414(in Chinese)
Citation: WANG Qing, GONG Ligang, DONG Chaoyanget al. Spacecraft attitude passivity control based on PCH model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1061-1071. doi: 10.13700/j.bh.1001-5965.2016.0414(in Chinese)

基于PCH模型的航天器姿态无源控制

doi: 10.13700/j.bh.1001-5965.2016.0414
基金项目: 

国家自然科学基金 61374012

详细信息
    作者简介:

    王青, 女, 博士, 教授, 博士生导师。主要研究方向:航天器控制、飞行器制导控制一体化、故障检测

    龚立纲, 男, 博士研究生。主要研究方向:飞行器控制、非线性控制理论及应用

    董朝阳, 男, 博士, 教授, 博士生导师。主要研究方向:飞行器总体设计、电器系统综合

    通讯作者:

    王青, E-mail:bhwangqing@126.com

  • 中图分类号: TP249;V448.22

Spacecraft attitude passivity control based on PCH model

Funds: 

National Natural Science Foundation of China 61374012

More Information
  • 摘要:

    针对存在干扰力矩的航天器姿态控制问题,从能量角度提出一种基于端口受控哈密顿(PCH)系统模型的无源控制方法。通过将姿态控制系统表示为PCH形式,并增加与姿态误差积分有关的状态,利用互联和阻尼分配无源控制(IDA-PBC)方法进行控制器设计,使得闭环系统具有期望的内部互连结构关系和能量耗散特性,所提出的控制方案能保证系统的输入-状态稳定性。进一步,考虑执行器的动态特性,利用反步法对控制指令进行补偿设计,结合指令滤波技术避免对虚拟控制量高阶导数的计算,并从理论上证明了闭环系统一致最终有界。仿真结果验证了本文所提控制方法相比于单独基于无源性控制方法的性能优势。

     

  • 图 1  四元数变化曲线(不考虑执行器动态特性)

    Figure 1.  Variation curves of quaternion (without consideration of actuator dynamics)

    图 2  角速度变化曲线(不考虑执行器动态特性)

    Figure 2.  Variation curves of angular rate(without consideration of actuator dynamics)

    图 3  姿态控制力矩变化曲线(不考虑执行器动态特性)

    Figure 3.  Variation curves of attitude control torque(without consideration of actuator dynamics)

    图 4  四元数变化曲线(考虑执行器动态特性)

    Figure 4.  Variation curves of quaternion(with consideration of actuator dynamics)

    图 5  角速度变化曲线(考虑执行器动态特性)

    Figure 5.  Variation curves of angular rate(with consideration of actuator dynamics)

  • [1] LEE T.Global exponential attitude tracking controls on SO3[J].IEEE Transactions on Automatic Control, 2015, 60(10):2837-2842. doi: 10.1109/TAC.2015.2407452
    [2] DE ANGELIS E L, GIULIETTI F, DE RUITER A H J, et al.Spacecraft attitude control using magnetic and mechanical actuation[J].Journal of Guidance, Control, and Dynamics, 2016, 39(3):564-573. doi: 10.2514/1.G000957
    [3] RODRIQUEZ-VAZQUEZ A L, MARTIN-PRATS M A, BERNELLI-ZAZZERA F.Spacecraft magnetic attitude control using approximating sequence Riccati equations[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):3374-3385. doi: 10.1109/TAES.2015.130478
    [4] ALI I, RADICE G, KIM J.Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):254-259. doi: 10.2514/1.45541
    [5] ZHANG H, FANG J.Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope[J].Journal of Guidance, Control, and Dynamics, 2013, 36(5):1356-1363. doi: 10.2514/1.59327
    [6] ZHU Z, XIA Y Q, FU M Y.Adaptive sliding mode control for attitude stabilization with actuator saturation[J].IEEE Transactions on Industrial Electronics, 2011, 58(10):4898-4907. doi: 10.1109/TIE.2011.2107719
    [7] LU K F, XIA Y Q, ZHU Z, et al.Sliding mode attitude tracking of rigid spacecraft with disturbances[J].Journal of the Franklin Institute, 2012, 349(2):413-440. doi: 10.1016/j.jfranklin.2011.07.019
    [8] WANG X K, YU C B.Unit dual quaternion-based feedback linearization tracking problem for attitude and position dynamics[J].Systems & Control Letters, 2013, 62(3):225-233. https://www.researchgate.net/publication/257012473_Unit_dual_quaternion-based_feedback_linearization_tracking_problem_for_attitude_and_position_dynamics
    [9] BAJODAH A H.Asymptotic generalised dynamic inversion attitude control[J].IET Control Theory & Applications, 2010, 4(5):827-840. https://www.researchgate.net/publication/224137618_Asymptotic_generalised_dynamic_inversion_attitude_control
    [10] FORBES J R.Passivity-based attitude control on the special orthogonal group of rigid-body rotations[J].Journal of Guidance, Control, and Dynamics, 2013, 36(6):1596-1605. doi: 10.2514/1.59270
    [11] WANG H L, XIE Y C.Passivity based attitude control of rigid bodies[J].Asian Journal of Control, 2014, 16(3):802-817. doi: 10.1002/asjc.2014.16.issue-3
    [12] PARK Y.Robust and optimal attitude control of spacecraft with disturbances[J].International Journal of Systems Science, 2015, 46(7):1222-1233. doi: 10.1080/00207721.2013.815824
    [13] ORTEGA R, VAN DER SCHAFT A, MASCHKE B, et al.Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J].Automatica, 2002, 38(4):585-596. doi: 10.1016/S0005-1098(01)00278-3
    [14] JELTSEMA D, ORTEGA R, SCHERPEN J M A.An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems[J].Automatica, 2004, 40(9):1643-1646. doi: 10.1016/j.automatica.2004.04.007
    [15] ACOSTA J A, ORTEGA R, ASTOLFI A, et al.Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one[J].IEEE Transactions on Automatic Control, 2005, 50(12):1936-1955. doi: 10.1109/TAC.2005.860292
    [16] BATLLE C, DÒRIA-CEREZO A, ESPINOSA-PEREZ G, et al.Simultaneous interconnection and damping assignment passivity-based control:The induction machine case study[J].International Journal of Control, 2009, 82(2):241-255. doi: 10.1080/00207170802050817
    [17] DONAIRE A, PETER T.Dynamic positioning of marine craft using a port-Hamiltonian framework[J].Automatica, 2012, 48(5):851-856. doi: 10.1016/j.automatica.2012.02.022
    [18] ZENG J W, ZHANG Z, QIAO W.An interconnection and damping assignment passivity-based controller for a DC-DC boost converter with a constant power load[J].IEEE Transactions on Industry Applications, 2014, 50(4):2314-2322. doi: 10.1109/TIA.2013.2290872
    [19] CRASTA N, ORTEGA R, PILLAI H K.On the matching equations of energy shaping controllers for mechanical systems[J].International Journal of Control, 2015, 88(9):1757-1765. doi: 10.1080/00207179.2015.1016453
    [20] AOKI T, YAMASHITA Y, TSUBAKINO D.Vibration suppression for mass-spring-damper systems with a tuned mass damper using interconnection and damping assignment passivity-based control[J].International Journal of Robust and Nonlinear Control, 2016, 26(2):235-251. doi: 10.1002/rnc.3307
    [21] NUNNA K, SASSANO M, ASTOLFI A.Constructive interconnection and damping assignment for port-controlled Hamiltonian systems[J].IEEE Transactions on Automatic Control, 2015, 60(9):2350-2361. doi: 10.1109/TAC.2015.2400663
    [22] ROMERO J G, DONAIRE A, ORTEGA R.Robust energy shaping control of mechanical systems[J].Systems & Control Letters, 2013, 62(9):770-780. https://www.researchgate.net/publication/261081678_Robust_energy_shaping_control_of_mechanical_systems
    [23] KRISTIANSEN R, HAGEN D.Modelling of actuator dynamics for spacecraft attitude control[J].Journal of Guidance, Control, and Dynamics, 2009, 32(3):1022-1025. doi: 10.2514/1.42574
    [24] HU Q L, XIAO B, WANG D W, et al.Attitude control of spacecraft with actuator uncertainty[J].Journal of Guidance, Control, and Dynamics, 2013, 36(6):1771-1776. doi: 10.2514/1.58624
    [25] DONG W, FARRELL J A, POLYCARPOU M M, et al.Command filtered adaptive backstepping[J].IEEE Transactions on Control Systems Technology, 2012, 20(3):566-580. doi: 10.1109/TCST.2011.2121907
    [26] KHALIL H K. 非线性系统[M]. 朱义胜, 董辉, 李作洲, 等译. 3版. 北京: 电子工业出版社, 2011: 96-118.

    KHALIL H K.Nonlinear systems[M].ZHU Y S, DONG H, LI Z Z, et al, translated.3rd ed.Beijing:Publishing House of Electronics Industry, 2011:96-118(in Chinese).
    [27] ZOU Y, ZHENG Z.A robust adaptive RBFNN augmenting backstepping control approach for a model-scaled helicopter[J].IEEE Transactions on Control Systems Technology, 2015, 23(6):2344-2352. doi: 10.1109/TCST.2015.2396851
    [28] SUN L, ZUO Z.Nonlinear adaptive trajectory tracking control for a quad-rotor with parametric uncertainty[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(9):1709-1721. doi: 10.1177/0954410014558692
    [29] ZHU B, WANG Q, HUO W.Longitudinal-lateral velocity control design and implementation for a model-scaled unmanned helicopter[J].Nonlinear Dynamics, 2014, 76(2):1579-1589. doi: 10.1007/s11071-013-1230-z
  • 加载中
图(5)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  116
  • PDF下载量:  565
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 录用日期:  2016-08-25
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答