Simulation and test verification of piezoelectric cantilever vibration energy harvester
-
摘要:
基于压电陶瓷的振动能量收集器以其结构简单、清洁环保及易于微型化等诸多优点受到广泛关注。利用压电陶瓷的正压电效应,根据机电理论和结构动力学理论,采用模态法建立了压电悬臂梁的双向耦合分布参数模型,仿真分析了外激励频率和外接负载对压电能量收集器输出电压特性的影响,设计制作了铝制悬臂梁,并进行了地面振动和能量收集试验,试验结果与理论仿真吻合较好,验证了理论建模的正确性。试验结果表明,单个压电片的能量收集电压最大为73 V/N。
Abstract:Piezoelectric ceramic vibration energy harvester has attracted great attention for its simple structure, environment protection, easy miniaturization and other advantages. According to piezoelectric effect, a double-coupled distributed parameter model was established using mode method by combination of electromechanical theory and structural dynamics theory. Simulation analysis of effect of excitation frequency and load on output voltage of piezoelectric energy harvester was performed. Al-cantilever energy harvester was made to perform ground vibration and energy harvesting test. The experimental results are in good agreement with the numerical simulation, which verifies the correctness of theoretical modeling. Experimental results show that the max voltage output of a single piezoelectric patch is 73 V/N.
-
Key words:
- piezoelectric effect /
- energy harvester /
- double-coupled /
- ground test /
- piezoelectric ceramic
-
表 1 压电悬臂梁和压电片的几何参数及材料性能参数
Table 1. Geometry and material performance parameters of piezoelectric cantilever and piezoelectric patch
参数 数值 铝制悬臂梁 压电片(PZT-5) 长/mm 533 60 宽/mm 30 30 高/mm 5 0.5 弹性模量/GPa 72 61 泊松比 0.3 0.35 密度/(kg·m-3) 2 700 7 500 压电常数e31*/ (C·m-2) -11.27 电容/nF 139 -
[1] 王青萍. 基于压电臂梁的振动能量收集器的研究[D]. 武汉: 华中科技大学, 2010: 2-5.WANG Q P.Research on vibration energy harvester based on piezoelectric cantilever[D].Wuhan:Huazhong University of Science and Technology, 2010:2-5(in Chinese). [2] PRIYA S, INMAN D J. 能量收集技术[M]. 黄见球, 黄庆安, 译. 南京: 东南大学出版社, 2012: 1-100.PRIYA S, INMAN D J.Energy harvesting technologies[M].HUANG J Q, HUANG Q A, translated.Nanjing:Southeast University Press, 2012:1-100(in Chinese). [3] ARNOLD D. Review of microscale magnetic power generation[J].IEEE Transactions on Magnetics, 2007, 43(11):3940-3951. doi: 10.1109/TMAG.2007.906150 [4] MITCHESON P, MIAO P, START B, et al.MEMS electrostatic micro-power generator for low frequency operation[J]. Sensors and Actuators A, 2004, 115(2-3):523-529. doi: 10.1016/j.sna.2004.04.026 [5] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials[J]. Smart Materials and Structures, 2007, 16(3):R1-R21. doi: 10.1088/0964-1726/16/3/R01 [6] JEON Y B, SOOD R, JEONG J H, et al. MEMS power generator with transverse mode thin film PZT[J]. Sensors and ActuatorsA, 2005, 122(1):16-22. doi: 10.1016/j.sna.2004.12.032 [7] UCHINO K. Piezoelectric actuators 2006[J]. Journal of Electroceramics, 2008, 20(3-4):301-311. doi: 10.1007/s10832-007-9196-1 [8] ERTURK A, INMAN D J.A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters[J].Journal of Vibration and Acoustics, 2008, 130(4):41002. doi: 10.1115/1.2890402 [9] BADEL A, GUYOMAR D, LEFEUVRE E, et al.Piezoelectric energy harvesting using a synchronized switch technique[J].Journal of Intelligent Material Systems and Structures, 2006, 17(8-9):831-839. doi: 10.1177/1045389X06057533 [10] STEWART M, WEAVER P M, CAIN M. Charge redistribution in piezoelectric energy harvesters[J].Applied Physics Letters, 2012, 100(7):073901. doi: 10.1063/1.3685701 [11] 赵新强. 基于颤振机理的微型压电风致振动能量收集器基础理论与关键技术[D]. 重庆: 重庆大学, 2013: 10-20.ZHAO X Q.Basic theory and key technologies of micro piezoelectric wind-induced-vibration energy harvester based on flutter[D].Chongqing:Chongqing University, 2013:10-20(in Chinese). [12] WANG Y, INMAN D J.Experimental validation of a multifunctional wing spar design with sensing, harvesting and gust alleviation capabilities[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1289-1299. doi: 10.1109/TMECH.2013.2255063 [13] WU Y N, LI D C, XIANG J W.Performance analysis and parametric design of an airfoil-based piezoaeroelastic energy harvester[J].European Journal of Lipid Science & Technology, 2014, 116(9):1114-1128. doi: 10.2514/6.2015-0445 [14] ANTON S R, ERTURK A, INMAN D J. Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage[J].Journal of Aircraft, 2012, 49(1):292-301. doi: 10.2514/1.C031542 [15] 方同, 薛璞.振动理论及应用[M].西安:西北工业大学出版社, 1998:200-240.FANG T, XUE P. Vibrancy theory and applications[M].Xi'an:Northwestern Polytechnical University Press, 1998:200-240(in Chinese). [16] 王矜奉, 苏文斌, 王春明, 等.压电振动理论及应用[M].北京:科学出版社, 2011:10-80.WANG J F, SU W B, WANG C M, et al.Theory and application of piezoelectric vibration[M].Beijing:Science Press, 2011:10-80(in Chinese).