Convex surface ray tracing based on adaptive cutting surface adjustment under exact normal vector
-
摘要:
针对电大尺寸目标难以精确解析表达带来的一致性几何绕射算法应用难问题,提出了基于三角网格、适用于任意凸曲面的射线寻迹(TM-tracing)算法。应用工程中较易获取的三角网格及其协议,设计了一种满足快速多边搜索条件的网状数据存储链表;提出了满足寻迹要求的高精度法矢求解算法;采用切割面自适应调整的弧形拟合寻迹方法实现了爬行波寻迹算法;结合一致性几何绕射理论(UTD)实现了暗区场值求解算法。任意网格曲面射线寻迹结果表明:本文提出的寻迹算法适用于包括球、柱和锥在内的任意光滑凸曲面,寻迹偏差小于1.61%,寻迹速度为2.8 s,具有一定的工程应用价值。
-
关键词:
- 三角网格 /
- 一致性几何绕射理论(UTD) /
- 射线寻迹 /
- 短程线 /
- 爬行波
Abstract:Electrical large targets are difficult to be accurately and analytically expressed and thus it is difficult to use uniform geometrical theory of diffraction (UTD) method for field computation. Aimed at this problem, a novel creeping ray triangular mesh tracing (TM-tracing) algorithm for arbitrary convex surface was proposed. Based on practical engineering triangular mesh and its protocol, a net-like triangular mesh data storage list which meets the rapid multilateral search criteria was designed. A high accuracy normal vector algorithm was proposed to satisfy the tracing requirement. Then a dynamic adjustment of the arc cutting surface fitting tracing method was proposed to realize creeping wave tracing algorithm. Finally, combined with UTD, shadow field value solving algorithm was realized. Aircraft-based ray tracing results show that TM-tracing algorithm can be applied to arbitrary smooth convex surfaces including sphere, cylinder and cone. Tracing speed is 2.8 seconds and deviation is less than 1.61%. It shows that the proposed algorithm has an application value in engineering.
-
表 1 法矢计算精度对比
Table 1. Computation precision of normal vector
参量 x/m y/m z/m 模长/m 理论 -0.0074 0.1002 0.9877 1 本文算法 -0.0016 0.1222 0.9925 0.99999165 表 2 球体上短程线寻迹结果对比
Table 2. Comparison of geodesic tracing results on a sphere
方法 长度/m 偏差/m 误差/% 时间开销/s 理论方法 3.1237 0.0496 1.61 2.8 最小夹角法[5] 3.6925 0.6184 20.11 1.2 本文算法 3.0741 表 3 椭球体上测地线的结束点与长度对比
Table 3. Finishing point and length of geodesic on ellipsoid
-
[1] 苏东林, 谢树果, 戴飞, 等.系统级电磁兼容性量化设计理论与方法[M].北京:国防工业出版社, 2015:115.SU D L, XIE S G, DAI F, et al.The theory and method of quantification design on system-level electromagnetic compatibility[M].Beijing:National Defense Industry Press, 2015:115(in Chinese). [2] FU S, ZHANG Y H, HE S Y, et al.Creeping ray tracing algorithm for arbitrary NURBS surfaces based on adaptive variable step euler method[J].International Journal of Antennas and Propagation, 2015, 2015:604861. https://www.researchgate.net/publication/282519598_Creeping_Ray_Tracing_Algorithm_for_Arbitrary_NURBS_Surfaces_Based_on_Adaptive_Variable_Step_Euler_Method [3] JONATHAN R P, ERIC L S.Exact geodesics and shortest paths on polyhedral surfaces[J].IEEE Transactions on Pathtern Analysis and Machine Intelligence, 2009, 31(6):1006-1015 doi: 10.1109/TPAMI.2008.213 [4] 王冰切, 苏东林, 张晓雷.飞机表面绕射射线的寻迹方法[J].北京航空航天大学学报, 2007, 33(7):785-788. http://bhxb.buaa.edu.cn/CN/abstract/abstract9480.shtmlWANG B Q, SU D L, ZHANG X L.Discrete ray path tracing on aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7):785-788(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9480.shtml [5] 陈志贤, 苏东林, 刘焱, 等.任意曲面上射线的寻迹方法[J].北京航空航天大学学报, 2013, 39(5):665-669. http://bhxb.buaa.edu.cn/CN/abstract/abstract12623.shtmlCHEN Z X, SU D L, LIU Y, et al.Ray path tracing on discrete surface[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):665-669(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12623.shtml [6] WANG N, DU X X, WANG Y, et al.Double diffraction and double reflection in NURBS-UTD method[J].Microwave and Optical Technology Letters, 2013, 55(7):1549-1553. doi: 10.1002/mop.27652 [7] CHEN X, HE S Y, YU D F, et al.Geodesic computation on nurbs surfaces for UTD analysis[J].IEEE Antennas and Wireless Propagation Letters, 2013, 12:194-197. doi: 10.1109/LAWP.2013.2245291 [8] WANG N, LIANG C H, YUAN H B.Calculation of pattern in UTD method based on NURBS modeling with the source on surface[J].Microwave and Optical Technology Letters, 2007, 49(10):2492-2498. doi: 10.1002/mop.22727 [9] CHEN X, HE S Y, YU D F, et al.Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces[J].Journal of the Optical Society of America A, 2013, 30(4):663-670. doi: 10.1364/JOSAA.30.000663 [10] RUAN Y C, ZHOU X Y, JESSIE Y C, et al.The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes[C]//IEEE Antennas and Propagation Society International Symposium.Piscataway, NJ:IEEE Press, 2008:1-4. [11] SURAZHSKY V, SURAZHSKY T, KIRSANOV D, et al.Fast exact and approximate geodesics on meshes[J].ACM Transactions on Graphics, 2005, 24(3):553-560. doi: 10.1145/1073204 [12] FRANK W.Ray tracing with PO/PTD for RCS modeling of large complex objects[J].IEEE Transactions on Antennas and Propagation, 2006, 54(6):1797-1806. doi: 10.1109/TAP.2006.875910 [13] PATHAK P H, BURNSIDE W D, MARHEKA R J.A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface[J].IEEE Transactions on Antennas and Propagation, 1980, 28(5):631-642. doi: 10.1109/TAP.1980.1142396 [14] 汪茂光.几何绕射理论[M].西安:西安电子科技大学出版社, 1994:198-210.WANG M G.Geometrical theory of diffraction[M].Xi'an:Xidian University Press, 1994:198-210(in Chinese). [15] 神会存, 周来水.基于离散曲率计算的三角网格模型优化调整[J].航空学报, 2006, 27(2):318-324. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200602030.htmSHEN H C, ZHOU L S.Triangular mesh regularization based on discrete curvature estimation[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(2):318-324(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200602030.htm [16] MARTINEZ D, VELHO L, CARVALHO P C.Computing geodesics on triangular meshes[J].Computers & Graphics, 2005, 29(5):667-675. http://www.academia.edu/7079635/Computing_geodesics_on_triangular_meshes