留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长时间流固耦合传热过程的快速算法

孟繁超 董素君 江泓升 王浚

孟繁超, 董素君, 江泓升, 等 . 长时间流固耦合传热过程的快速算法[J]. 北京航空航天大学学报, 2017, 43(6): 1224-1230. doi: 10.13700/j.bh.1001-5965.2016.0447
引用本文: 孟繁超, 董素君, 江泓升, 等 . 长时间流固耦合传热过程的快速算法[J]. 北京航空航天大学学报, 2017, 43(6): 1224-1230. doi: 10.13700/j.bh.1001-5965.2016.0447
MENG Fanchao, DONG Sujun, JIANG Hongsheng, et al. A fast algorithm for long-term fluid-solid conjugate heat transfer process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1224-1230. doi: 10.13700/j.bh.1001-5965.2016.0447(in Chinese)
Citation: MENG Fanchao, DONG Sujun, JIANG Hongsheng, et al. A fast algorithm for long-term fluid-solid conjugate heat transfer process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1224-1230. doi: 10.13700/j.bh.1001-5965.2016.0447(in Chinese)

长时间流固耦合传热过程的快速算法

doi: 10.13700/j.bh.1001-5965.2016.0447
详细信息
    作者简介:

    孟繁超,男, 硕士研究生。主要研究方向:流场温度场数值仿真技术

    董素君,女, 教授, 硕士生导师。主要研究方向:飞行器环境控制系统仿真及CFD数值计算技术、飞行器综合环境控制及热管理技术、高超声速飞行器气动热环境模拟技术

    通讯作者:

    董素君, E-mail: dsj@buaa.edu.cn

  • 中图分类号: TK124

A fast algorithm for long-term fluid-solid conjugate heat transfer process

More Information
  • 摘要:

    针对千秒级长时间流固耦合传热(CHT)过程求解问题,进一步提出一种基于准稳态流场的全局瞬态紧耦合传热的新型松耦合算法。交替使用单独对流体区域进行稳态流场求解的算法更新流场,以及同时对流固区域进行瞬态传热求解的算法计算瞬态温度场。该算法相对于传统流固松耦合算法,可以大大减小流场更新频率,进一步显著提高计算效率。以管内定来流速度空气连续300 s的强制对流瞬态加热过程为例,利用Fluent软件证明了该算法相对于瞬态紧耦合算法获得的管体结构温升最大偏差为5%,而计算耗时减小到14.8%。

     

  • 图 1  新型松耦合算法流程示意图

    T—温度; Pf—流体压力; Vf—流体速度; Δtf—稳态流场更新步长; Δtc—瞬态时间步长; n—瞬态迭代步数; Tw—壁面温度

    Figure 1.  Flow diagram of new loosely coupled algorithm

    图 2  空气内加热管几何模型

    Figure 2.  Geometric model of inner-air-heated tube

    图 3  管内不同位置处空气静压变化曲线

    Figure 3.  Changing curves of inner air staticpressure at different locations

    图 4  2种算法所得不同位置管体温升、温升绝对偏差及温升相对偏差变化曲线

    Figure 4.  Changing curves of wall temperature rise, absolutedeviation of wall temperature rise and relative deviation ofwall temperature rise at different locations by two algorithms

    图 5  2种算法所得不同时刻管体温升分布对比曲线

    Figure 5.  Contrast curves of wall temperature rise distribution at different moments by two algorithms

    图 6  定来流工况下,管内壁热流随时间变化曲线

    Figure 6.  Curve of inner wall heat flux variation with time under constant flow rate condition

    表  1  2种算法所得不同时刻管体温升分布情况

    Table  1.   Wall temperature rise distribution at different moments by two algorithms

    K
    时刻/s 位置1 位置2 位置3 位置4 位置5
    紧耦合 松耦合 偏差 紧耦合 松耦合 偏差 紧耦合 松耦合 偏差 紧耦合 松耦合 偏差 紧耦合 松耦合 偏差
    100 71.79 71.24 -0.55 49.43 49.38 -0.05 36.43 36.53 0.10 26.72 26.84 0.12 20.09 20.37 0.28
    200 90.41 90.78 0.37 77.80 77.46 -0.34 65.10 64.89 -0.21 53.68 53.61 -0.07 44.95 45.08 0.13
    300 96.45 96.79 0.34 90.62 90.57 -0.05 82.36 82.20 -0.16 73.44 73.28 -0.16 65.93 65.80 -0.13
    下载: 导出CSV
  • [1] STOKOS K, VRAHLIOTIS S, PAPPOU T, et al.Development and validation of an incompressible Navier-Stokes solver including convective heat transfer[J].International Journal of Numerical Methods for Heat & Fluid Flow, 2015, 25(4):861-886. https://www.researchgate.net/publication/276532443_Development_and_validation_of_an_incompressible_Navier-Stokes_solver_including_convective_heat_transfer
    [2] HOOPER R W, SMITH T M, OBER C C.Enabling fluid-structural strong thermal coupling within a multi-physics environment[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2006:1-10.
    [3] KAZEMI-KAMYAB V, VAN ZUIJLEN A H, BIJL H.Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer:A strongly-coupled approach[J].Journal of Computational Physics, 2014, 272:471-486. doi: 10.1016/j.jcp.2014.04.016
    [4] 曾大文, 黄开金.非交错网格下三维准稳态激光重熔熔池数值模拟[J].计算物理, 1999, 16(6):616-623. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199906010.htm

    ZENG D W, HUANG K J.Numerical simulation of three dimensional quasi-steady state laser melted pools on the non-staggered grids[J].Chinese Journal of Computational Physics, 1999, 16(6):616-623(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199906010.htm
    [5] 殷鹏飞, 张蓉, 熊江涛, 等.搅拌摩擦焊准稳态温度场数值模拟[J].西北工业大学学报, 2012, 30(4):622-627. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201204031.htm

    YIN P F, ZHANG R, XIONG J T, et al.An effective numerical simulation of temperature distribution of friction stir welding in quasi-steady-state[J].Journal of Northwestern Polytechnical University, 2012, 30(4):622-627(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201204031.htm
    [6] BAUMAN P T, STOGNER R, CAREY G F, et al.Loose-coupling algorithm for simulating hypersonic flows with radiation and ablation[J].Journal of Spacecraft and Rockets, 2011, 48(1):72-80. doi: 10.2514/1.50588
    [7] KAZEMI-KAMYAB V, VAN ZUIJLEN A H, BIJL H.A high order time-accurate loosely-coupled solution algorithm for unsteady conjugate heat transfer problems[J].Computer Methods in Applied Mechanics and Engineering, 2013, 264:205-217. doi: 10.1016/j.cma.2013.05.021
    [8] KAZEMI-KAMYAB V, VAN ZUIJLEN A H, BIJL H.Accuracy and stability analysis of a second-order time-accurate loosely coupled partitioned algorithm for transient conjugate heat transfer problems[J].International Journal for Numerical Methods in Fluids, 2014, 74(2):113-133. doi: 10.1002/fld.v74.2
    [9] LOHNER R, YANG C, CEBRAL J, et al.Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[C]//Proceedings of 29th AIAA Fluid Dynamics Conference.Reston:AIAA, 1998:1-16.
    [10] LI Q, LIU P, HE G.Fluid-solid coupled simulation of the ignition transient of solid rocket motor[J].Acta Astronautica, 2015, 110:180-190. doi: 10.1016/j.actaastro.2015.01.017
    [11] MILLER B A, CROWELL A R, MCNAMARA J J.Loosely coupled time-marching of fluid-thermal-structural interactions:AIAA-2013-1666[R].Reston:AIAA, 2013.
    [12] KONTINOS D.Coupled thermal analysis method with application to metallic thermal protection panels[J].Journal of Thermophysics and Heat Transfer, 1997, 11(2):173-181. doi: 10.2514/2.6249
    [13] CHEN Y K, MILOS F S, GOKCEN T.Loosely coupled simulation for two-dimensional ablation and shape change[J].Journal of Spacecraft & Rockets, 2010, 47(5):775-785. https://www.researchgate.net/publication/241306596_Loosely_Coupled_Simulation_for_Two-Dimensional_Ablation_and_Shape_Change
    [14] ZHANG S, CHEN F, LIU H.Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows[J].Journal of Thermophysics and Heat Transfer, 2014, 28(4):1-12. https://www.researchgate.net/publication/269786163_Time-Adaptive_Loosely_Coupled_Strategy_for_Conjugate_Heat_Transfer_Problems_in_Hypersonic_Flows
    [15] AMES W F.Numerical methods for partial differential equations[M].2nd ed. New York:Academic Press, 1977:114, 116-117, 145-151.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  238
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 录用日期:  2016-10-14
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答